Advertisements
Advertisements
प्रश्न
Differentiate (log x)x with respect to log x ?
उत्तर
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = x\left( \frac{1}{\log x} \right)\frac{d}{dx}\left( \log x \right) + \log\log x\left( 1 \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \frac{x}{\log x}\left( \frac{1}{x} \right) + \log \log x \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \frac{1}{\log x} + \log \log x \right] . . \left( i \right)\]
\[\text { Again, let v } = \log x\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{x} . . . \left( ii \right)\]
\[\text { Dividing equation } \left( i \right) \text { by } \left( ii \right), \text { we get }\]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\left( \log x \right)^x \left[ \frac{1}{\log x} + \log \log x \right]}{\frac{1}{x}}\]
\[ \Rightarrow \frac{du}{dv} = \frac{\left( \log x \right)^x \left[ \frac{1 + \log x\left( \log \log x \right)}{\log x} \right]}{\frac{1}{x}}\]
\[ \Rightarrow \frac{du}{dv} = x \left( \log x \right)^{x^{- 1}} \left( 1 + \log x \times \log \log x \right)\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate the following functions from first principles e3x.
Differentiate sin (3x + 5) ?
Differentiate tan 5x° ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[x^{\tan^{- 1} x }\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
Find the second order derivatives of the following function x3 log x ?
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If y = etan x, then (cos2 x)y2 =
f(x) = xx has a stationary point at ______.