मराठी

Differentiate (Log X)X With Respect to Log X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate (log x)x with respect to log x ?

उत्तर

\[\text { Let u } = \left( \log x \right)^x\]
Taking log on both sides, 
\[\log u = \log \left( \log x \right)^x \]
\[ \Rightarrow \log u = x \log\left( \log x \right) \]
\[\Rightarrow \frac{1}{u}\frac{du}{dx} = x\frac{d}{dx}\left\{ \log\left( \log x \right) \right\} + \log\left( \log x \right)\frac{d}{dx}\left( x \right)\]

\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = x\left( \frac{1}{\log x} \right)\frac{d}{dx}\left( \log x \right) + \log\log x\left( 1 \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \frac{x}{\log x}\left( \frac{1}{x} \right) + \log \log x \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \frac{1}{\log x} + \log \log x \right] . . \left( i \right)\]
\[\text { Again, let v } = \log x\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{x} . . . \left( ii \right)\]
\[\text { Dividing equation } \left( i \right) \text { by } \left( ii \right), \text { we get }\]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\left( \log x \right)^x \left[ \frac{1}{\log x} + \log \log x \right]}{\frac{1}{x}}\]
\[ \Rightarrow \frac{du}{dv} = \frac{\left( \log x \right)^x \left[ \frac{1 + \log x\left( \log \log x \right)}{\log x} \right]}{\frac{1}{x}}\]
\[ \Rightarrow \frac{du}{dv} = x \left( \log x \right)^{x^{- 1}} \left( 1 + \log x \times \log \log x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.08 [पृष्ठ ११२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.08 | Q 3 | पृष्ठ ११२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate the following functions from first principles e3x.


Differentiate sin (3x + 5) ?


Differentiate tan 5x° ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[x^{\tan^{- 1} x }\]  ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


Find the second order derivatives of the following function x3 log ?


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If y = etan x, then (cos2 x)y2 =


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×