Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
उत्तर
\[\text{ Let, y } = \sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}\]
\[\text{ put x } = \cos 2\theta\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \frac{\sqrt{1 + \cos 2\theta} + \sqrt{1 - \cos 2\theta}}{2} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \frac{\sqrt{2 \cos^2 \theta} + \sqrt{2 \sin^2 \theta}}{2} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \frac{\sqrt{2} \cos\theta + \sqrt{2} \sin\theta}{2} \right\} \]
\[ \Rightarrow y = \sin^{- 1} \left\{ \cos\theta\left( \frac{1}{\sqrt{2}} \right) + \left( \frac{1}{\sqrt{2}} \right)\sin\theta \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \cos\theta \sin\theta\left( \frac{\pi}{4} \right) + \cos\frac{\pi}{4}\sin\theta \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( \theta + \frac{\pi}{4} \right) \right\} . . . \left( i \right)\]
\[\text{ Here }, 0 < x < 1\]
\[ \Rightarrow 0 < \cos 2\theta < 1 \]
\[ \Rightarrow 0 < 2\theta < \frac{\pi}{2} \]
\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]
\[ \Rightarrow \frac{\pi}{4} < \left( \theta + \frac{\pi}{4} \right) < \frac{\pi}{2}\]
\[\text{ So, from equation } \left( i \right), \]
\[ y = \theta + \frac{\pi}{4} ..........\left[ \text{ Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow y = \frac{1}{2} \cos^{- 1} x + \frac{\pi}{4}\]
\[\text{Differentiate it with respect to x }, \]
\[\frac{d y}{d x} = \frac{1}{2}\left( \frac{- 1}{\sqrt{1 - x^2}} \right) + 0\]
\[ \therefore \frac{d y}{d x} = \frac{- 1}{2\sqrt{1 - x^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
Find the second order derivatives of the following function log (log x) ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.