Advertisements
Advertisements
प्रश्न
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
उत्तर
\[\text { We have, x } = \frac{\sin^3 t}{\sqrt{\cos2t}} \text { and y } = \frac{\cos^3 t}{\sqrt{\cos2t}}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{d}{dt}\left[ \frac{\sin^3 t}{\sqrt{\cos2t}} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\sqrt{\cos2t}\frac{d}{dt}\left( \sin^3 t \right) - \sin^3 t\frac{d}{dt}\sqrt{\cos2t}}{\cos2t} ............\left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dx}{dt} = \frac{\sqrt{\cos2t}\left( 3 \sin^2 t \right)\frac{d}{dt}\left( \sin t \right) - \sin^3 t \times \frac{1}{2\sqrt{\cos2t}}\frac{d}{dt}\left( \cos 2t \right)}{\cos2t} \]
\[ \Rightarrow \frac{dx}{dt} = \frac{3\sqrt{\cos2t}\left( \sin^2 t \cos t \right) - \frac{\sin^3 t}{2\sqrt{\cos2t}}\left( - 2 \sin2t \right)}{\cos 2t}\]
\[ \Rightarrow \frac{dx}{dt} = \frac{3\cos2t \sin^2 t \cos t + \sin^3 t \sin2t}{\cos2t\sqrt{\cos2t}}\]
\[Now, \frac{dy}{dt} = \frac{d}{dt}\left[ \frac{\cos^3 t}{\sqrt{\cos2t}} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \frac{\sqrt{\cos2t}\frac{d}{dt}\left( \cos^3 t \right) - \cos^3 t\frac{d}{dt}\sqrt{\cos2t}}{\cos2t} ............\left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dt} = \frac{\sqrt{\cos2t}\left( 3 \cos^2 t \right)\frac{d}{dt}\left( \cos t \right) - \cos^3 t \times \frac{1}{2\sqrt{\cos2t}}\frac{d}{dt}\left( \cos 2t \right)}{\cos2t} \]
\[ \Rightarrow \frac{dy}{dt} = \frac{3\sqrt{\cos2t} \cos^2 t \left( - \sin t \right) - \frac{\cos^3 t}{2\sqrt{\cos2t}}\left( - 2 \sin2t \right)}{\cos 2t}\]
\[ \Rightarrow \frac{dy}{dt} = \frac{- 3\cos2t \cos^2 t \sin t + \cos^3 t \sin2t}{\cos2t\sqrt{\cos2t}}\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- 3\cos2t \cos^2 t \sin t + \cos^3 t \sin2t}{\cos2t\sqrt{\cos2t}} \times \frac{\cos2t\sqrt{\cos2t}}{3\cos2t \sin^2 t \cos t + \sin^3 t \sin2t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 3\cos2t \cos^2 t \sin t + \cos^3 t \sin2t}{3\cos2t \sin^2 t \cos t + \sin^3 t \sin2t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin t \cos t\left[ - 3\cos2t \cos t + 2 \cos^3 t \right]}{\sin t \cos t\left[ 3\cos2t \sin t + 2 \sin^3 t \right]}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left[ - 3\left( 2 \cos^2 t - 1 \right)\cos t + 2 \cos^3 t \right]}{\left[ 3\left( 1 - 2 \sin^2 t \right)\sin t + 2 \sin^3 t \right]} ............[{\cos2t = 2 \cos^2 t - 1}, {\cos2t = 1 - 2 \sin^2 t}]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 4 \cos^3 t + 3\cos t}{3\ sint - 4 \sin^3 t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \cos3t}{\sin3t} ..............[{\cos3t = 4 \cos^3 t - 3\cos t}, {\sin3t = 3\sin t - 4 \sin^3 t}]\]
\[ \therefore \frac{dy}{dx} = - \cot3t\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate the following functions from first principles log cosec x ?
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate tan 5x° ?
Differentiate (log sin x)2 ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[e^{x \log x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function sin (log x) ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
f(x) = 3x2 + 6x + 8, x ∈ R