मराठी

Differentiate Tan − 1 { X a + √ a 2 − X 2 } , − a < X < a ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?

बेरीज

उत्तर

\[\text{ Let, y } = \tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}\]

\[\text{ Put x }= a \sin\theta\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a + \sqrt{a^2 - a^2 \sin^2 \theta}} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left( \frac{a \sin\theta}{a + \sqrt{a^2 \left( 1 - \sin^2 \theta \right)}} \right) \]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a + a \cos\theta} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a\left( 1 + \cos\theta \right)} \right\} \]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{\sin\theta}{1 + \cos\theta} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left( \tan \frac{\theta}{2} \right) . . . \left( i \right) \]

\[\text{Here }, - a < x < a\]

\[ \Rightarrow - 1 < \frac{x}{a} < 1\]

\[ \Rightarrow - 1 < \sin\theta < 1\]

\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2}\]

\[ \Rightarrow - \frac{\pi}{4} < \frac{\theta}{2} < \frac{\pi}{4}\]

\[\text{ So, from equation } \left( i \right), \]

\[ y = \frac{\theta}{2} .......\left[ \text{ Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]

\[ \Rightarrow y = \frac{1}{2} \sin^{- 1} \left( \frac{x}{a} \right) ..........\left[ \text{ Since }, x = a \sin\theta \right]\]

\[\text{ Differentiating it with respect to x }, \]

\[ \frac{d y}{d x} = \frac{1}{2} \times \frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^2}}\frac{d}{dx}\left( \frac{x}{a} \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{a}{2\sqrt{a^2 - x^2}} \times \left( \frac{1}{a} \right)\]

\[ \therefore \frac{d y}{d x} = \frac{1}{2\sqrt{a^2 - x^2}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.03 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.03 | Q 13 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate tan2 x ?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?

 


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×