Advertisements
Advertisements
प्रश्न
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
उत्तर
\[\text{ We have }, \cos y = x \cos\left( a + y \right)\]
\[\text{ Differentiating with respect to x, we get }, \]
\[\frac{d}{dx}\left( \cos y \right) = \frac{d}{dx}\left\{ x\cos\left( a + y \right) \right\}\]
\[ \Rightarrow - \sin y\frac{dy}{dx} = \cos\left( a + y \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx} \cos\left( a + y \right) \]
\[ \Rightarrow - \sin y\frac{dy}{dx} = \cos\left( a + y \right) + x\left[ - \sin\left( a + y \right) \right]\frac{dy}{dx}\]
\[ \Rightarrow \left[ x\sin\left( a + y \right) - \sin y \right]\frac{dy}{dx} = \cos\left( a + y \right) \]
\[ \Rightarrow \left[ \frac{\cos y}{\cos\left( a + y \right)}\sin\left( a + y \right) - \sin y \right]\frac{dy}{dx} = \cos\left( a + y \right) \left[ \because \cos y = x \cos\left( a + y \right) \Rightarrow x = \frac{\cos y}{\cos\left( a + y \right)} \right]\]
\[ \Rightarrow \left[ \cos y\sin\left( a + y \right) - \sin y\cos\left( a + y \right) \right]\frac{dy}{dx} = \cos^2 \left( a + y \right)\]
\[ \Rightarrow \sin\left( a + y - y \right)\frac{dy}{dx} = \cos^2 \left( a + y \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\]
APPEARS IN
संबंधित प्रश्न
Differentiate sin (3x + 5) ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Differentiate sin(log sin x) ?