Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
उत्तर
\[\text { Let, u } = \sin^{- 1} \sqrt{1 - x^2}\]
\[\text { Put x } = \cos\theta\]
\[ \Rightarrow u = \sin^{- 1} \sqrt{1 - \cos^2 \theta}\]
\[ \Rightarrow u = \sin^{- 1} \left( \sin\theta \right) . . . \left( i \right)\]
\[\text { And,} v = \cos^{- 1} x . . . \left( ii \right)\]
\[\text { Now, x } \in \left( 0, 1 \right)\]
\[ \Rightarrow \cos\theta \in \left( 0, 1 \right)\]
\[ \Rightarrow \theta \in \left( 0, \frac{\pi}{2} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[ u = \theta \left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta \text { if } \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow u = \cos^{- 1} x \left[ \text { Since }, \cos\theta = x \right]\]
Differentiating it with respect to x,
\[\frac{du}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iii \right)\]
\[\text { from equation } \left( ii \right), \]
\[v = \cos^{- 1} x\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) by \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{- 1}{\sqrt{1 - x^2}} \times \frac{\sqrt{1 - x^2}}{- 1}\]
\[ \therefore \frac{du}{dx} = 1\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles eax+b.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate log7 (2x − 3) ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Differentiate x2 with respect to x3
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
Differential coefficient of sec(tan−1 x) is ______.
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function tan−1 x ?
Find the second order derivatives of the following function x cos x ?
Find the second order derivatives of the following function log (log x) ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to