Advertisements
Advertisements
प्रश्न
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
उत्तर
\[\text { Let, u } = \cos^{- 1} \left( 4 x^3 - 3x \right)\]
\[\text { Put, x } = \cos\theta\]
\[ \Rightarrow \theta = \cos^{- 1} x\]
\[\text { Now, u }= \cos^{- 1} \left( 4 \cos^3 \theta - 3\cos\theta \right)\]
\[ \Rightarrow u = \cos^{- 1} \left( \cos3\theta \right) . . . \left( i \right)\]
\[\text { Let, v } = \tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right)\]
\[ \Rightarrow v = \tan^{- 1} \left( \frac{\sqrt{1 - \cos^2 \theta}}{\cos\theta} \right) \]
\[ \Rightarrow v = \tan^{- 1} \left( \frac{\sin\theta}{\cos\theta} \right)\]
\[ \Rightarrow v = \tan^{- 1} \left( \tan\theta \right) . . . \left( ii \right)\]
\[\text { Here }, \]
\[ \frac{1}{2} < x < 1\]
\[ \Rightarrow \frac{1}{2} < \cos\theta < 1\]
\[ \Rightarrow 0 < \theta < \frac{\pi}{3}\]
\[\text { So, from equation } \left( i \right), \]
\[u = 3\theta .........\left[ \text { Since }, \cos^{- 1} \left( \cos\theta \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right]\]
\[ \Rightarrow u = 3 \cos^{- 1} x\]
Differentiating it with respect to x,
\[\frac{du}{dx} = \frac{- 3}{\sqrt{1 - x^2}} . . . \left( iii \right)\]
\[\text{ From equation } \left( ii \right), \]
\[v = \theta ..........\left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow v = \cos^{- 1} x\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation} \left( iii \right) \text { by } \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \left( \frac{- 3}{\sqrt{1 - x^2}} \right)\left( - \frac{\sqrt{1 - x^2}}{1} \right)\]
\[ \therefore \frac{du}{dv} = 3\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate sin (3x + 5) ?
Differentiate tan (x° + 45°) ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.