Advertisements
Advertisements
प्रश्न
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
उत्तर
\[\text{ Let y } = \left( \sin^{- 1} x \right)^x . . . \left( i \right)\]
\[\text{ Taking log on both sides }, \]
\[\log y = \log \left( \sin^{- 1} x \right)^x \]
\[ \Rightarrow \log y = x \log\left( \sin^{- 1} x \right) \]
\[\text{ Differentiating with respect to x}, \]
\[\frac{1}{y}\frac{dy}{dx} = x\frac{d}{dx}\left( \log \sin^{- 1} x \right) + \log \sin^{- 1} x\frac{d}{dx}x \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x\frac{1}{\sin^{- 1} x}\frac{d}{dx}\left( \sin^{- 1} x \right) + \log \sin^{- 1} x\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{x}{\sin^{- 1} x}\left( \frac{1}{\sqrt{1 - x^2}} \right) + \log \sin^{- 1} x\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \log \sin^{- 1} x + \frac{x}{\sin^{- 1} x\left( \sqrt{1 - x^2} \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( \sin^{- 1} x \right)^x \left[ \log \sin^{- 1} x + \frac{x}{\sin^{- 1} x\left( \sqrt{1 - x^2} \right)} \right] \left[ \text{ using equation} \left( i \right) \right]\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate sin2 (2x + 1) ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
Find the second order derivatives of the following function log (sin x) ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
f(x) = xx has a stationary point at ______.