Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
उत्तर
\[\text{ We have, x } = e^\theta \left( \theta + \frac{1}{\theta} \right)\]
Differentiating it with respect to \[\theta\]
\[\frac{dx}{d\theta} = e^\theta \frac{d}{d\theta}\left( \theta + \frac{1}{\theta} \right) + \left( \theta + \frac{1}{\theta} \right)\frac{d}{d\theta}\left( e^\theta \right) \left[ \text{ using product rule } \right]\]
\[ \Rightarrow \frac{dx}{d\theta} = e^\theta \left( 1 - \frac{1}{\theta^2} \right) + \left( \frac{\theta^2 + 1}{\theta} \right) e^\theta \]
\[ \Rightarrow \frac{dx}{d\theta} = e^\theta \left( 1 - \frac{1}{\theta^2} + \frac{\theta^2 + 1}{\theta} \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = e^\theta \left( \frac{\theta^2 - 1 + \theta^3 + \theta}{\theta^2} \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = \frac{e^\theta \left( \theta^3 + \theta^2 + \theta - 1 \right)}{\theta^2} . . . \left( i \right)\]
\[\text{ and }, \]
\[ y = e^\theta \left( \theta - \frac{1}{\theta} \right)\]
Differentiating it with respect to \[\theta\] using chain rule
\[\frac{dy}{d\theta} = e^{- \theta} \frac{d}{d\theta}\left( \theta - \frac{1}{\theta} \right) + \left( \theta - \frac{1}{\theta} \right)\frac{d}{d\theta}\left( e^{- \theta} \right) \left[ \text{ using product rule } \right]\]
\[ \Rightarrow \frac{dy}{d\theta} = e^{- \theta} \left( 1 + \frac{1}{\theta^2} \right) + \left( \theta - \frac{1}{\theta} \right) e^\theta \frac{d}{d\theta}\left( - \theta \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = e^{- \theta} \left( 1 + \frac{1}{\theta^2} \right) + \left( \theta - \frac{1}{\theta} \right) e^{- \theta} \left( - 1 \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = e^{- \theta} \left( 1 + \frac{1}{\theta^2} - \theta + \frac{1}{\theta} \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = e^{- \theta} \left( \frac{\theta^2 + 1 - \theta^3 + \theta}{\theta^2} \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = \frac{e^{- \theta} \left( - \theta^3 + \theta^2 + \theta + 1 \right)}{\theta^2} . . . \left( ii \right)\]
\[\text{ Dividing equation } \left( ii \right) by \left( i \right), \]
\[\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = e^{- \theta} \left( \frac{\theta^2 - \theta^3 + \theta + 1}{\theta^2} \right) \times \frac{\theta^2}{e^\theta \left( \theta^3 + \theta^2 + \theta - 1 \right)}\]
\[ = e^{- 2\theta} \left( \frac{\theta^2 - \theta^3 + \theta + 1}{\theta^3 + \theta^2 + \theta - 1} \right)\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y = etan x, then (cos2 x)y2 =
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
f(x) = xx has a stationary point at ______.