मराठी

Prove that D D X { X 2 √ a 2 − X 2 + a 2 2 Sin − 1 X a } = √ a 2 − X 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?

उत्तर

\[\frac{d}{dx}\left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\]

\[\text{ LHS } = \frac{d}{dx}\left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\}\]

\[ = \frac{d}{dx}\left( \frac{x}{2}\sqrt{a^2 - x^2} \right) + \frac{d}{dx}\left( \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right)\]

\[ = \frac{1}{2}\left[ x\frac{d}{dx}\sqrt{a^2 - x^2} + \sqrt{a^2 - x^2}\frac{d}{dx}\left( x \right) \right] + \frac{a^2}{2} \times \frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^2}} \times \frac{d}{dx}\left( \frac{x}{a} \right) \]

\[ = \frac{1}{2}\left[ x \times \frac{1}{2\sqrt{a^2 - x^2}}\frac{d}{dx}\left( a^2 - x^2 \right) + \sqrt{a^2 - x^2} \right] + \left[ \frac{a^2}{2} \right] \times \frac{1}{\sqrt{\frac{a^2 - x^2}{a^2}}} \times \left( \frac{1}{a} \right)\]

\[ = \frac{1}{2}\left[ \frac{x\left( - 2x \right)}{2\sqrt{a^2 - x^2}} + \sqrt{a^2 - x^2} \right] + \left( \frac{a^2}{2} \right)\frac{a}{\sqrt{a^2 - x^2}} \times \left( \frac{1}{a} \right)\]

\[ = \frac{1}{2}\left[ \frac{- 2 x^2 + 2\left( a^2 - x^2 \right)}{2\sqrt{a^2 - x^2}} \right] + \frac{a^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{1}{2}\left[ \frac{2\left( a^2 - 2 x^2 \right)}{2\sqrt{a^2 - x^2}} \right] + \frac{a^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{a^2 - 2 x^2}{2\sqrt{a^2 - x^2}} + \frac{a^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{a^2 - 2 x^2 + a^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{2 a^2 - 2 x^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{2\left( a^2 - x^2 \right)}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{\left( a^2 - x^2 \right)}{\sqrt{a^2 - x^2}}\]

\[ = \sqrt{a^2 - x^2} = RHS\]

\[\text{ Hence proved }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.02 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.02 | Q 74 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate tan 5x° ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


Find the second order derivatives of the following function e6x cos 3x  ?


Find the second order derivatives of the following function x cos x ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×