English

Prove that D D X { X 2 √ a 2 − X 2 + a 2 2 Sin − 1 X a } = √ a 2 − X 2 ? - Mathematics

Advertisements
Advertisements

Question

Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?

Solution

\[\frac{d}{dx}\left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\]

\[\text{ LHS } = \frac{d}{dx}\left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\}\]

\[ = \frac{d}{dx}\left( \frac{x}{2}\sqrt{a^2 - x^2} \right) + \frac{d}{dx}\left( \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right)\]

\[ = \frac{1}{2}\left[ x\frac{d}{dx}\sqrt{a^2 - x^2} + \sqrt{a^2 - x^2}\frac{d}{dx}\left( x \right) \right] + \frac{a^2}{2} \times \frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^2}} \times \frac{d}{dx}\left( \frac{x}{a} \right) \]

\[ = \frac{1}{2}\left[ x \times \frac{1}{2\sqrt{a^2 - x^2}}\frac{d}{dx}\left( a^2 - x^2 \right) + \sqrt{a^2 - x^2} \right] + \left[ \frac{a^2}{2} \right] \times \frac{1}{\sqrt{\frac{a^2 - x^2}{a^2}}} \times \left( \frac{1}{a} \right)\]

\[ = \frac{1}{2}\left[ \frac{x\left( - 2x \right)}{2\sqrt{a^2 - x^2}} + \sqrt{a^2 - x^2} \right] + \left( \frac{a^2}{2} \right)\frac{a}{\sqrt{a^2 - x^2}} \times \left( \frac{1}{a} \right)\]

\[ = \frac{1}{2}\left[ \frac{- 2 x^2 + 2\left( a^2 - x^2 \right)}{2\sqrt{a^2 - x^2}} \right] + \frac{a^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{1}{2}\left[ \frac{2\left( a^2 - 2 x^2 \right)}{2\sqrt{a^2 - x^2}} \right] + \frac{a^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{a^2 - 2 x^2}{2\sqrt{a^2 - x^2}} + \frac{a^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{a^2 - 2 x^2 + a^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{2 a^2 - 2 x^2}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{2\left( a^2 - x^2 \right)}{2\sqrt{a^2 - x^2}}\]

\[ = \frac{\left( a^2 - x^2 \right)}{\sqrt{a^2 - x^2}}\]

\[ = \sqrt{a^2 - x^2} = RHS\]

\[\text{ Hence proved }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.02 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.02 | Q 74 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate log7 (2x − 3) ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?

 


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[x^{\sin x}\]  ?


Differentiate \[e^{x \log x}\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function x cos x ?


If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×