English

Find D Y D X Y = X Log X + ( Log X ) X ? - Mathematics

Advertisements
Advertisements

Question

Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?

Sum

Solution

\[\text{ Let y }= x^{\log x }+ \left( \log x \right)^x \]

\[\text{ Also, let u } = \left( \log x \right)^x \text{ and v} = x^{\log x} \]

\[ \therefore y = v + u\]

\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} + \frac{du}{dx} . . . \left( i \right)\]

\[\text{ Now, u} = \left( \log x \right)^x \]

\[ \Rightarrow \log u = \log\left[ \left( \log x \right)^x \right]\]

\[ \Rightarrow \log u = x\log\left( \log x \right)\]

Differentiating both sides with respect to x,

\[\frac{1}{u}\frac{du}{dx} = \log\left( \log x \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left[ \log\left( \log x \right) \right]\]

\[ \Rightarrow \frac{du}{dx} = u\left[ \log\left( \log x \right) + x\frac{1}{\log x}\frac{d}{dx}\left( \log x \right) \right]\]

\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{x}{\log x} \times \frac{1}{x} \right]\]

\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{1}{\log x} \right] . . . \left( ii \right)\]

\[\text{ Also, v} = x^{\log x} \]

\[ \Rightarrow \log v = \log x^{\log x} \]

\[ \Rightarrow \log v = \log x \log x = \left( \log x \right)^2 \]

Differentiating both sides with respect to x,

\[\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left[ \left( \log x \right)^2 \right]\]

\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = 2\left( \log x \right)\frac{d}{dx}\left( \log x \right)\]

\[ \Rightarrow \frac{dv}{dx} = 2v\left( \log x \right)\frac{1}{x}\]

\[ \Rightarrow \frac{dv}{dx} = 2 x^{\log x} \frac{\log x}{x}\]

\[ \Rightarrow \frac{dv}{dx} = 2 x^{\log x} \frac{\log x}{x} . . . \left( iii \right)\]

\[\text{ From} \left( i \right), \left( ii \right) \text{ and }\left( iii \right), \text{ we obtain}\]

\[\frac{dy}{dx} = 2 x^{\log x} \frac{\log x}{x} + \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{1}{\log x} \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 89]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 32 | Page 89

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Differentiate log7 (2x − 3) ?


Differentiate \[3^{e^x}\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

Differentiate (log x)x with respect to log x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


Find the second order derivatives of the following function x cos x ?


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×