English

If X Sin ( a + Y ) + Sin a Cos ( a + Y ) = 0 , Prove that D Y D X = Sin 2 ( a + Y ) Sin a ? - Mathematics

Advertisements
Advertisements

Question

If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 

Sum

Solution

\[\text{ We have}, x \sin\left( a + y \right) + \sin a \cos\left( a + y \right) = 0\]

Differentiating with respect to x using chain rule,

\[\frac{d}{dx}\left[ x \sin\left( a + y \right) + \sin a \cos\left( a + y \right) \right] = 0\]
\[ \Rightarrow x\frac{d}{dx}\sin\left( a + y \right) + \sin\left( a + y \right)\frac{d}{dx}\left( x \right) + \sin a\frac{d}{dx}\cos\left( a + y \right) + \cos\left( a + y \right)\frac{d}{dx}\sin a = 0\]
\[ \Rightarrow x \cos\left( a + y \right)\left( 0 + \frac{dy}{dx} \right) + \sin\left( a + y \right) + \sin a\left\{ - \sin\left( a + y \right)\frac{dy}{dx} \right\} + 0 = 0\]
\[ \Rightarrow \left[ x \cos\left( a + y \right) - \sin a \sin\left( a + y \right) \right]\frac{dy}{dx} + \sin\left( a + y \right) = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\sin\left( a + y \right)}{x \cos\left( a + y \right) - \sin a \sin\left( a + y \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \sin\left( a + y \right)}{\left\{ - \frac{\sin a \cos\left( a + y \right)}{\sin\left( a + y \right)} \right\}\cos\left( a + y \right) - \sin a \sin\left( a + y \right)} .................\left[ \because x = - \frac{\sin a \cos\left( a + y \right)}{\sin\left( a + y \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a \cos^2 \left( a + y \right) + \sin a \sin^2 \left( a + y \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a\left[ \cos^2 \left( a + y \right) + \sin^2 \left( a + y \right) \right]}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a} ..............\left[ \because \cos^2 \left( a + y \right) + \sin^2 \left( a + y \right) = 1 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 90]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 47 | Page 90

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles e−x.


Differentiate the following functions from first principles x2ex ?


Differentiate sin2 (2x + 1) ?


Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


Differential coefficient of sec(tan−1 x) is ______.


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×