English

If Y = Log E ( X a + B X ) X Then X3 Y2 = (A) (Xy1 − Y)2 (B) (1 + Y)2 - Mathematics

Advertisements
Advertisements

Question

If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 

Options

  • (xy1 − y)2

  • (1 + y)2

  • \[\left( \frac{y - x y_1}{y_1} \right)^2\]

  • none of these

MCQ

Solution

(a) (xy1 − y)2

Here,

\[y = \log_e \left( \frac{x}{a + bx} \right)^x \]

\[ \Rightarrow y = x \log_e \left( \frac{x}{a + bx} \right) \]

\[ \Rightarrow y_1 = \log_e \left( \frac{x}{a + bx} \right) + x \times \frac{a + bx}{x}\left( \frac{1}{a + bx} - \frac{bx}{\left( a + bx \right)^2} \right)\]

\[ \Rightarrow y_1 = \log_e \left( \frac{x}{a + bx} \right) + \left( \frac{a}{a + bx} \right) . . . \left( 1 \right)\]

\[ \Rightarrow y_1 = \frac{y}{x} + \left( \frac{a}{a + bx} \right) \left[ \because y = x \log_e \left( \frac{x}{a + bx} \right) \right]\]

\[ \Rightarrow \frac{x y_1 - y}{x} = \frac{a}{a + bx} . . . \left( 2 \right)\]

\[\text{Differentiating } \left( 1 \right) \text { we get }, \]

\[ y_2 = \frac{a + bx}{x}\left( \frac{a + bx - bx}{\left( a + bx \right)^2} \right) - \frac{ba}{\left( a + bx \right)^2}\]

\[ \Rightarrow y_2 = \frac{a}{x\left( a + bx \right)} - \frac{ba}{\left( a + bx \right)^2}\]

\[ \Rightarrow y_2 = \frac{a\left( a + bx \right) - abx}{x \left( a + bx \right)^2}\]

\[ \Rightarrow y_2 = \frac{a^2}{x \left( a + bx \right)^2}\]

\[ \Rightarrow y_2 = \frac{\left( x y_1 - y \right)^2}{x^3} \left[ \text { Using }
\left( 2 \right) \right]\]

\[ \Rightarrow x^3 y_2 = \left( x y_1 - y \right)^2 \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.3 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.3 | Q 20 | Page 24

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that `y=(4sintheta)/(2+costheta)-theta `


Differentiate the following functions from first principles log cos x ?


Differentiate the following functions from first principles x2ex ?


Differentiate etan x ?


Differentiate (log sin x)?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


Find the second order derivatives of the following function x cos x ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×