Advertisements
Advertisements
Question
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
Options
3(xy2 + y1)y2
3(xy1 + y2)y2
3(xy2 + y1)y1
none of these
Solution
(a) 3(xy2 + y1)y2
Here,
\[y = \frac{ax + b}{x^2 + c}\]
\[ \Rightarrow \left( x^2 + c \right)y = ax + b\]
\[\text { Diffferentiating w . r . t . x, we get }\]
\[2xy + \left( x^2 + c \right)\frac{dy}{dx} = a\]
\[\text { Diffferentiating w . r . t . x, we get }\]
\[2y + 2x y_1 + 2x y_1 + \left( x^2 + c \right) y_2 = 0\]
\[ \Rightarrow 2y + 4x y_1 + \left( x^2 + c \right) y_2 = 0\]
\[\text { Diffferentiating again w . r . t . x, we get }\]
\[2 y_1 + 4 y_1 + 4x y_2 + \left( x^2 + c \right) y_3 + 2x y_2 = 0\]
\[ \Rightarrow 6 y_1 + 6x y_2 + \left( x^2 + c \right) y_3 = 0\]
\[ \Rightarrow 6 y_1 + 6x y_2 + \left( \frac{- 2y - 4x y_1}{y_2} \right) y_3 = 0 \left[ \because 2y + 4x y_1 + \left( x^2 + c \right) y_2 = 0 \right]\]
\[ \Rightarrow 6 y_1 y_2 + 6x \left( y_2 \right)^2 - 2y - 4x y_1 y_3 = 0\]
\[ \Rightarrow 3 y_1 y_2 + 3x \left( y_2 \right)^2 - y - 2x y_1 y_3 = 0\]
\[ \Rightarrow \left( y_1 + x y_2 \right)3 y_2 = \left( 2x y_1 + y \right) y_3 \]
APPEARS IN
RELATED QUESTIONS
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles log cos x ?
Differentiate sin (log x) ?
Differentiate `2^(x^3)` ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
f(x) = xx has a stationary point at ______.