English

If Y = a X + B X 2 + C Then (2xy1 + Y)Y3 = (A) 3(Xy2 + Y1)Y2 (B) 3(Xy1 + Y2)Y2 (C) 3(Xy2 + Y1)Y1 (D) None of These - Mathematics

Advertisements
Advertisements

Question

If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 

Options

  • 3(xy2 + y1)y2

  • 3(xy1 + y2)y2

  • 3(xy2 + y1)y1

  • none of these

MCQ

Solution

(a) 3(xy2 + y1)y2

Here,

\[y = \frac{ax + b}{x^2 + c}\]
\[ \Rightarrow \left( x^2 + c \right)y = ax + b\]
\[\text { Diffferentiating w . r . t . x, we get }\]
\[2xy + \left( x^2 + c \right)\frac{dy}{dx} = a\]
\[\text { Diffferentiating w . r . t . x, we get }\]
\[2y + 2x y_1 + 2x y_1 + \left( x^2 + c \right) y_2 = 0\]
\[ \Rightarrow 2y + 4x y_1 + \left( x^2 + c \right) y_2 = 0\]
\[\text { Diffferentiating again w . r . t . x, we get }\]
\[2 y_1 + 4 y_1 + 4x y_2 + \left( x^2 + c \right) y_3 + 2x y_2 = 0\]
\[ \Rightarrow 6 y_1 + 6x y_2 + \left( x^2 + c \right) y_3 = 0\]
\[ \Rightarrow 6 y_1 + 6x y_2 + \left( \frac{- 2y - 4x y_1}{y_2} \right) y_3 = 0 \left[ \because 2y + 4x y_1 + \left( x^2 + c \right) y_2 = 0 \right]\]
\[ \Rightarrow 6 y_1 y_2 + 6x \left( y_2 \right)^2 - 2y - 4x y_1 y_3 = 0\]
\[ \Rightarrow 3 y_1 y_2 + 3x \left( y_2 \right)^2 - y - 2x y_1 y_3 = 0\]
\[ \Rightarrow \left( y_1 + x y_2 \right)3 y_2 = \left( 2x y_1 + y \right) y_3 \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.3 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.3 | Q 19 | Page 24

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate the following functions from first principles log cos x ?


Differentiate sin (log x) ?


Differentiate `2^(x^3)` ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\tan \left( e^{\sin x }\right)\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[\left( \log x \right)^x\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate \[\left( \tan x \right)^{1/x}\] ?


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×