Advertisements
Advertisements
Question
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Solution
\[\text{ We have, }\sin\left( xy \right) + \frac{y}{x} = x^2 - y^2\]
Differentiating with respect to x, we get,
\[\Rightarrow \frac{d}{dx}\left( \sin xy \right) + \frac{d}{dx}\left( \frac{y}{x} \right) = \frac{d}{dx}\left( x^2 \right) - \frac{d}{dx}\left( y^2 \right)\]
\[ \Rightarrow \cos\left( xy \right)\frac{d}{dx}\left( xy \right) + \left\{ \frac{x\frac{dy}{dx} - y\frac{d}{dx}\left( x \right)}{x^2} \right\} = 2x - 2y\frac{dy}{dx} \]
\[ \Rightarrow \cos\left( xy \right)\left\{ x\frac{dy}{dx} + y\frac{d}{dx}\left( x \right) \right\} + \left\{ \frac{x\frac{dy}{dx} - y\left( 1 \right)}{x^2} \right\} = 2x - 2y\frac{dy}{dx}\]
\[ \Rightarrow \cos\left( xy \right)\left\{ x\frac{dy}{dx} + y\left( 1 \right) \right\} + \frac{1}{x^2}\left( x\frac{dy}{dx} - y \right) = 2x - 2y\frac{dy}{dx}\]
\[ \Rightarrow x \cos\left( xy \right)\frac{dy}{dx} + y \cos\left( xy \right) + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2} = 2x - 2y\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx}\left\{ x \cos\left( xy \right) + \frac{1}{x} + 2y \right\} = \frac{y}{x^2} - y \cos\left( xy \right) + 2x\]
\[ \Rightarrow \frac{dy}{dx}\left\{ \frac{x^2 \cos\left( xy \right) + 1 + 2xy}{x} \right\} = \frac{1}{x^2}\left( y - x^2 y \cos\left( xy \right) + 2 x^3 \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 x^3 + y - x^2 y \cos\left( xy \right)}{x\left( x^2 \cos\left( xy \right) + 1 + 2xy \right)}\]
APPEARS IN
RELATED QUESTIONS
Differentiate log7 (2x − 3) ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If y = a + bx2, a, b arbitrary constants, then
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?