Advertisements
Advertisements
Question
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Options
\[\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}\]
\[\frac{y^2}{x^2}\sqrt{\frac{1 - y^6}{1 + x^6}}\]
\[\frac{x^2}{y^2}\sqrt{\frac{1 - x^6}{1 - y^6}}\]
none of these
Solution
\[\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}\]
\[\text { We have }, \sqrt{1 - x^6} + \sqrt{1 - y^6} = a\left( x^3 - y^3 \right)\]
\[\text { Putting } x^3 = \sin A \text { and }y^3 = \sin B\]
\[ \Rightarrow \sqrt{1 - \sin^2 A} + \sqrt{1 - \sin^2 B} = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow \cos A + \cos B = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow 2\cos\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) = 2a \sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right)\]
\[ \Rightarrow \cot\left( \frac{A - B}{2} \right) = a\]
\[ \Rightarrow \frac{A - B}{2} = \cot^{- 1} \left( a \right)\]
\[ \Rightarrow A - B = 2 \cot^{- 1} \left( a \right)\]
\[ \Rightarrow \sin^{- 1} x^3 - \sin^{- 1} y^3 = 2 \cot^{- 1} \left( a \right)\]
\[\Rightarrow \frac{1}{\sqrt{1 - x^6}} \times \frac{d}{dx}\left( x^3 \right) - \frac{1}{\sqrt{1 - y^6}} \times \frac{d}{dx}\left( y^3 \right) = 0\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^6}} \times 3 x^2 - \frac{1}{\sqrt{1 - y^6}} \times 3 y^2 \times \frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2}{y^2}\sqrt{\frac{1 - y^6}{1 - x^6}}\]
APPEARS IN
RELATED QUESTIONS
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]