Advertisements
Advertisements
Question
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Options
1
\[\left( a + b + c \right)^{x^{a + b + c - 1}}\]
0
none of these
Solution
`0`
\[\text { We have }, \]
\[y = \frac{1}{1 + x^{a - b} + x^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\]
\[ = \frac{1}{1 + \frac{x^a}{x^b} + \frac{x^c}{x^b}} + \frac{1}{1 + \frac{x^b}{x^c} + \frac{x^a}{x^c}} + \frac{1}{1 + \frac{x^b}{x^a} + \frac{x^c}{x^a}}\]
\[ = \frac{x^b}{x^b + x^a + x^c} + \frac{x^c}{x^c + x^b + x^a} + \frac{x^a}{x^a + x^b + x^c}\]
\[ = \frac{x^b}{x^a + x^b + x^c} + \frac{x^c}{x^a + x^b + x^c} + \frac{x^a}{x^a + x^b + x^c}\]
\[ = \frac{x^b + x^c + x^a}{x^a + x^b + x^c}\]
\[ = \frac{x^a + x^b + x^c}{x^a + x^b + x^c}\]
\[ = 1\]
\[ \therefore \frac{dy}{dx} = \frac{d}{dx}\left( 1 \right) = 0\]
APPEARS IN
RELATED QUESTIONS
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function tan−1 x ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
Find the minimum value of (ax + by), where xy = c2.
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.