Advertisements
Advertisements
Question
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Solution
\[\text{We have,} \frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\]
\[\text{ By rationalising we get }, \]
\[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}} \times \frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}\]
\[ = \frac{\left( \sqrt{x^2 + 1} + \sqrt{x^2 - 1} \right)^2}{\left( \sqrt{x^2 + 1} \right)^2 - \left( \sqrt{x^2 - 1} \right)^2}\]
\[ = \frac{\left( \sqrt{x^2 + 1} \right)^2 + \left( \sqrt{x^2 - 1} \right)^2 + 2\left( \sqrt{x^2 + 1} \right)\left( \sqrt{x^2 - 1} \right)}{x^2 + 1 - x^2 + 1}\]
\[ = \frac{x^2 + 1 + x^2 - 1 + 2\sqrt{x^4 - 1}}{2}\]
\[ = \frac{2 x^2 + 2\sqrt{x^4 - 1}}{2}\]
\[ = x^2 + \sqrt{x^4 - 1}\]
\[\text{Now, Let } y = x^2 + \sqrt{x^4 - 1}\]
Differentiate it with respect to x we get,
\[\frac{dy}{dx} = \frac{d}{dx}\left( x^2 + \sqrt{x^4 - 1} \right)\]
\[ = 2x + \frac{1}{2\sqrt{x^4 - 1}} \times \frac{d}{dx}\left( x^4 - 1 \right)\]
\[ = 2x + \frac{1}{2\sqrt{x^4 - 1}} \times \left( 4 x^3 \right)\]
\[ = 2x + \frac{2 x^3}{\sqrt{x^4 - 1}}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate etan x ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
Differential coefficient of sec(tan−1 x) is ______.
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function x3 + tan x ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.