Advertisements
Advertisements
Question
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Solution
\[\text{ Let, y } = \sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}\]
\[\text{ put x } = \cos 2\theta\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \frac{\sqrt{1 + \cos 2\theta} + \sqrt{1 - \cos 2\theta}}{2} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \frac{\sqrt{2 \cos^2 \theta} + \sqrt{2 \sin^2 \theta}}{2} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \frac{\sqrt{2} \cos\theta + \sqrt{2} \sin\theta}{2} \right\} \]
\[ \Rightarrow y = \sin^{- 1} \left\{ \cos\theta\left( \frac{1}{\sqrt{2}} \right) + \left( \frac{1}{\sqrt{2}} \right)\sin\theta \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \cos\theta \sin\theta\left( \frac{\pi}{4} \right) + \cos\frac{\pi}{4}\sin\theta \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \sin\left( \theta + \frac{\pi}{4} \right) \right\} . . . \left( i \right)\]
\[\text{ Here }, 0 < x < 1\]
\[ \Rightarrow 0 < \cos 2\theta < 1 \]
\[ \Rightarrow 0 < 2\theta < \frac{\pi}{2} \]
\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]
\[ \Rightarrow \frac{\pi}{4} < \left( \theta + \frac{\pi}{4} \right) < \frac{\pi}{2}\]
\[\text{ So, from equation } \left( i \right), \]
\[ y = \theta + \frac{\pi}{4} ..........\left[ \text{ Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow y = \frac{1}{2} \cos^{- 1} x + \frac{\pi}{4}\]
\[\text{Differentiate it with respect to x }, \]
\[\frac{d y}{d x} = \frac{1}{2}\left( \frac{- 1}{\sqrt{1 - x^2}} \right) + 0\]
\[ \therefore \frac{d y}{d x} = \frac{- 1}{2\sqrt{1 - x^2}}\]
APPEARS IN
RELATED QUESTIONS
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate sin (log x) ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function x3 + tan x ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y = etan x, then (cos2 x)y2 =
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
Differentiate `log [x+2+sqrt(x^2+4x+1)]`