English

If Y = E a Cos − 1 X ,Prove that ( 1 − X 2 ) D 2 Y D X 2 − X D Y D X − a 2 Y = 0 ? - Mathematics

Advertisements
Advertisements

Question

If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?

Solution

Here,

\[y = e^{a \cos^{- 1} x} \]

\[\text { Differentiating w . r . t . x, we get }\]

\[\frac{d y}{d x} = - e^{a \cos^{- 1} x} \times \frac{a}{\sqrt{1 - x^2}}\]

\[\text { Differentiating again w . r . t . x, we get }\]

\[\frac{d^2 y}{d x^2} = e^{a \cos^{- 1} x} \times \frac{a^2}{1 - x^2} + \frac{2xa e^{a \cos^{- 1} x}}{2 \left( 1 - x^2 \right)^\frac{3}{2}}\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = e^{a \cos^{- 1} x} \times \frac{a^2}{1 - x^2} + \frac{xa e^{a \cos^{- 1} x}}{\left( 1 - x^2 \right)\sqrt{1 - x^2}}\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = y \times \frac{a^2}{1 - x^2} - \frac{x\frac{dy}{dx}}{\left( 1 - x^2 \right)}\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} = a^2 y - x\frac{dy}{dx}\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} - a^2 y = 0\]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.1 | Q 34 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that `y=(4sintheta)/(2+costheta)-theta `


Differentiate the following functions from first principles e−x.


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate sin (3x + 5) ?


Differentiate tan2 x ?


Differentiate tan (x° + 45°) ?


Differentiate log7 (2x − 3) ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


Find the second order derivatives of the following function  log (sin x) ?


Find the second order derivatives of the following function x3 log ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×