Advertisements
Advertisements
Question
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
Solution
Here,
\[y = e^{a \cos^{- 1} x} \]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{d y}{d x} = - e^{a \cos^{- 1} x} \times \frac{a}{\sqrt{1 - x^2}}\]
\[\text { Differentiating again w . r . t . x, we get }\]
\[\frac{d^2 y}{d x^2} = e^{a \cos^{- 1} x} \times \frac{a^2}{1 - x^2} + \frac{2xa e^{a \cos^{- 1} x}}{2 \left( 1 - x^2 \right)^\frac{3}{2}}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = e^{a \cos^{- 1} x} \times \frac{a^2}{1 - x^2} + \frac{xa e^{a \cos^{- 1} x}}{\left( 1 - x^2 \right)\sqrt{1 - x^2}}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = y \times \frac{a^2}{1 - x^2} - \frac{x\frac{dy}{dx}}{\left( 1 - x^2 \right)}\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} = a^2 y - x\frac{dy}{dx}\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} - a^2 y = 0\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles e−x.
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate sin (3x + 5) ?
Differentiate tan2 x ?
Differentiate tan (x° + 45°) ?
Differentiate log7 (2x − 3) ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function x3 log x ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .