English

Differentiate Tan − 1 ( 1 + a X 1 − a X ) with Respect to √ 1 + a 2 X 2 ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?

Solution

\[\text { Let, u }= \tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\]

\[\text { Put ax } = \tan\theta\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 + \tan\theta}{1 - \tan\theta} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4}\tan\theta} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} + \theta \right) \right]\]

\[ \Rightarrow u = \frac{\pi}{4} + \theta\]

\[ \Rightarrow u = \frac{\pi}{4} + \tan^{- 1} \left( ax \right) \left[ \text { Since}, \tan\theta = ax \right] \] 

Differentiating it with respect to x,

\[\frac{du}{dx} = 0 + \frac{1}{1 + \left( ax \right)^2}\frac{d}{dx}\left( ax \right) \]

\[ \Rightarrow \frac{du}{dx} = \frac{a}{1 + a^2 x^2} . . . \left( i \right) \]

\[\text { Now,} \]

\[\text { Let, v } = \sqrt{1 + a^2 x^2}\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\frac{d}{dx}\left( 1 + a^2 x^2 \right)\]

\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\left( 2 a^2 x \right)\]

\[ \Rightarrow \frac{dv}{dx} = \frac{a^2 x}{\sqrt{1 + a^2 x^2}} . . . \left( ii \right) \]

\[\text { Dividing equation } \left( i \right) \text { by }\left( ii \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{a}{1 + a^2 x^2} \times \frac{\sqrt{1 + a^2 x^2}}{a^2 x}\]

\[\frac{du}{dv} = \frac{1}{ax\sqrt{1 + a^2 x^2}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.08 [Page 113]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.08 | Q 10 | Page 113

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate sin (log x) ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[\left( \log x \right)^x\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?


If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


Find the second order derivatives of the following function  x3 + tan x ?


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function  log (sin x) ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×