Advertisements
Advertisements
Question
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
Solution
\[\text { Let, u }= \tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\]
\[\text { Put ax } = \tan\theta\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 + \tan\theta}{1 - \tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4}\tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} + \theta \right) \right]\]
\[ \Rightarrow u = \frac{\pi}{4} + \theta\]
\[ \Rightarrow u = \frac{\pi}{4} + \tan^{- 1} \left( ax \right) \left[ \text { Since}, \tan\theta = ax \right] \]
Differentiating it with respect to x,
\[\frac{du}{dx} = 0 + \frac{1}{1 + \left( ax \right)^2}\frac{d}{dx}\left( ax \right) \]
\[ \Rightarrow \frac{du}{dx} = \frac{a}{1 + a^2 x^2} . . . \left( i \right) \]
\[\text { Now,} \]
\[\text { Let, v } = \sqrt{1 + a^2 x^2}\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\frac{d}{dx}\left( 1 + a^2 x^2 \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 + a^2 x^2}}\left( 2 a^2 x \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{a^2 x}{\sqrt{1 + a^2 x^2}} . . . \left( ii \right) \]
\[\text { Dividing equation } \left( i \right) \text { by }\left( ii \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{a}{1 + a^2 x^2} \times \frac{\sqrt{1 + a^2 x^2}}{a^2 x}\]
\[\frac{du}{dv} = \frac{1}{ax\sqrt{1 + a^2 x^2}}\]
APPEARS IN
RELATED QUESTIONS
Differentiate sin (log x) ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function log (sin x) ?
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
Differentiate `log [x+2+sqrt(x^2+4x+1)]`