English

Find D Y D X in the Following Case X 2 / 3 + Y 2 / 3 = a 2 / 3 ? - Mathematics

Advertisements
Advertisements

Question

Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 

Sum

Solution

\[\text{We have }, x^\frac{2}{3} + y^\frac{2}{3} = a^\frac{2}{3} \]

Differentiating it with respect to x, we get,

\[\frac{d}{dx}\left( x^\frac{2}{3} \right) + \frac{d}{dx}\left( y^\frac{2}{3} \right) = \frac{d}{dx}\left( a^\frac{2}{3} \right)\]
\[ \Rightarrow \frac{2}{3} \left( x \right)^{\frac{2}{3} - 1} + \frac{2}{3} \left( y \right)^{\frac{2}{3} - 1} \frac{d y}{d x} = 0\]
\[ \Rightarrow \frac{2}{3} \left( x \right)^\frac{- 1}{3} + \frac{2}{3} \left( y \right)^\frac{- 1}{3} \frac{d y}{d x} = 0\]
\[ \Rightarrow \frac{2}{3} \left( y \right)^\frac{- 1}{3} \frac{d y}{d x} = - \frac{2}{3} \left( x \right)^\frac{- 1}{3} \]
\[ \Rightarrow \frac{d y}{d x} = - \frac{2}{3} \left( x \right)^\frac{- 1}{3} \times \frac{3}{2 y^\frac{- 1}{3}}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{x^\frac{- 1}{3}}{y^\frac{- 1}{3}}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{y^\frac{1}{3}}{x^\frac{1}{3}}\]
\[ \Rightarrow \frac{d y}{d x} = - \left( \frac{y}{x} \right)^\frac{1}{3} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.04 [Page 74]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.04 | Q 3 | Page 74

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate log (1 + x2) with respect to tan−1 x ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×