Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
उत्तर
\[\text{We have }, x^\frac{2}{3} + y^\frac{2}{3} = a^\frac{2}{3} \]
Differentiating it with respect to x, we get,
\[\frac{d}{dx}\left( x^\frac{2}{3} \right) + \frac{d}{dx}\left( y^\frac{2}{3} \right) = \frac{d}{dx}\left( a^\frac{2}{3} \right)\]
\[ \Rightarrow \frac{2}{3} \left( x \right)^{\frac{2}{3} - 1} + \frac{2}{3} \left( y \right)^{\frac{2}{3} - 1} \frac{d y}{d x} = 0\]
\[ \Rightarrow \frac{2}{3} \left( x \right)^\frac{- 1}{3} + \frac{2}{3} \left( y \right)^\frac{- 1}{3} \frac{d y}{d x} = 0\]
\[ \Rightarrow \frac{2}{3} \left( y \right)^\frac{- 1}{3} \frac{d y}{d x} = - \frac{2}{3} \left( x \right)^\frac{- 1}{3} \]
\[ \Rightarrow \frac{d y}{d x} = - \frac{2}{3} \left( x \right)^\frac{- 1}{3} \times \frac{3}{2 y^\frac{- 1}{3}}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{x^\frac{- 1}{3}}{y^\frac{- 1}{3}}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{y^\frac{1}{3}}{x^\frac{1}{3}}\]
\[ \Rightarrow \frac{d y}{d x} = - \left( \frac{y}{x} \right)^\frac{1}{3} \]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate the following functions from first principles x2ex ?
Differentiate `2^(x^3)` ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function log (log x) ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
Differentiate sin(log sin x) ?
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.