हिंदी

Find D Y D X in the Following Case X 2 / 3 + Y 2 / 3 = a 2 / 3 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 

योग

उत्तर

\[\text{We have }, x^\frac{2}{3} + y^\frac{2}{3} = a^\frac{2}{3} \]

Differentiating it with respect to x, we get,

\[\frac{d}{dx}\left( x^\frac{2}{3} \right) + \frac{d}{dx}\left( y^\frac{2}{3} \right) = \frac{d}{dx}\left( a^\frac{2}{3} \right)\]
\[ \Rightarrow \frac{2}{3} \left( x \right)^{\frac{2}{3} - 1} + \frac{2}{3} \left( y \right)^{\frac{2}{3} - 1} \frac{d y}{d x} = 0\]
\[ \Rightarrow \frac{2}{3} \left( x \right)^\frac{- 1}{3} + \frac{2}{3} \left( y \right)^\frac{- 1}{3} \frac{d y}{d x} = 0\]
\[ \Rightarrow \frac{2}{3} \left( y \right)^\frac{- 1}{3} \frac{d y}{d x} = - \frac{2}{3} \left( x \right)^\frac{- 1}{3} \]
\[ \Rightarrow \frac{d y}{d x} = - \frac{2}{3} \left( x \right)^\frac{- 1}{3} \times \frac{3}{2 y^\frac{- 1}{3}}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{x^\frac{- 1}{3}}{y^\frac{- 1}{3}}\]
\[ \Rightarrow \frac{d y}{d x} = - \frac{y^\frac{1}{3}}{x^\frac{1}{3}}\]
\[ \Rightarrow \frac{d y}{d x} = - \left( \frac{y}{x} \right)^\frac{1}{3} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.04 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.04 | Q 3 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate the following functions from first principles x2ex ?


Differentiate `2^(x^3)` ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


Find the second order derivatives of the following function  x3 + tan x ?


Find the second order derivatives of the following function  log (log x)  ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


Differentiate sin(log sin x) ?


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×