Advertisements
Advertisements
प्रश्न
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
विकल्प
\[- \frac{2}{1 + x^2}\]
\[\frac{2}{1 + x^2}\]
\[\frac{1}{2 - x^2}\]
\[\frac{2}{2 - x^2}\]
उत्तर
\[- \frac{2}{1 + x^2}\]
\[\text { Let y } = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right)\]
\[\text { Differentiating with respect to x using chain rule, we get }, \]
\[\frac{dy}{dx} = \frac{1}{\sqrt{1 - \left( \frac{1 - x^2}{1 + x^2} \right)^2}}\frac{d}{dx}\left( \frac{1 - x^2}{1 + x^2} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x^2 \right)}{\sqrt{\left( 1 + x^2 \right)^2 - \left( 1 - x^2 \right)^2}}\left[ \frac{\left( 1 + x^2 \right)\frac{d}{dx}\left( 1 - x^2 \right) - \left( 1 - x^2 \right)\frac{d}{dx}\left( 1 + x^2 \right)}{\left( 1 + x^2 \right)^2} \right] ..............\left[ \text { using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x^2 \right)}{\sqrt{\left( 1 + x^2 \right)^2 - \left( 1 - x^2 \right)^2}}\left[ \frac{\left( 1 + x^2 \right)\left( - 2x \right) - \left( 1 - x^2 \right)\left( 2x \right)}{\left( 1 + x^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + x^2 \right)}{2x}\left[ \frac{- 2x - 2 x^3 - 2x + 2 x^3}{\left( 1 + x^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 4x}{2x\left( 1 + x^2 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2}{1 + x^2}\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = etan x, then (cos2 x)y2 =
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
Find the minimum value of (ax + by), where xy = c2.
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?