हिंदी

If X Y + Y X = ( X + Y ) X + Y , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?

योग

उत्तर

\[\text{ We have, }x^y + y^x = \left( x + y \right)^{x + y} \]

\[ \Rightarrow e^{ \log x^y} + e^{\log y^x } = e^{ \log \left( x + y \right)^\left( x + y \right) } \]

\[ \Rightarrow e^{y \log x} + e^{x \log y} = e^{ \left( x + y \right) \log\left( x + y \right) }\]

Differentiating with respect to x using chain rule and product rule,

\[\Rightarrow \frac{d}{dx}\left( e^{y \log x} \right) + \frac{d}{dx}\left( e^{x \log y} \right) = \frac{d}{dx} e^{\left( x + y \right)\log\left( x + y \right)} \]

\[ \Rightarrow e^{y \log x } \left[ y\frac{d}{dx}\left( \log x \right) + \log x\frac{dy}{dx} \right] + e^{x \log y} \left[ x\frac{d}{dx}\log y + \log y\frac{d}{dx}\left( x \right) \right] = e^\left( x + y \right)\log\left( x + y \right) \frac{d}{dx}\left[ \left( x + y \right)\log\left( x + y \right) \right]\]

\[ \Rightarrow e^{ \log x^y } \left[ y\left( \frac{1}{x} \right) + \log x\frac{dy}{dx} \right] + e^{ \log x } \left[ \frac{x}{y}\frac{dy}{dx} + \log y\left( 1 \right) \right] = e^{{\log }\left( x + y \right)^\left( x + y \right)} \left[ \left( x + y \right)\frac{d}{dx}\log\left( x + y \right) + \log\left( x + y \right)\frac{d}{dx}\left( x + y \right) \right]\]

\[ \Rightarrow x^y \left[ \frac{y}{x} + \log x\frac{dy}{dx} \right] + y^x \left[ \frac{x}{y}\frac{dy}{dx} + \log y \right] = \left( x + y \right)^\left( x + y \right) \left[ \left( x + y \right)\frac{1}{\left( x + y \right)}\frac{d}{dx}\left( x + y \right) + \log\left( x + y \right)\left( 1 + \frac{dy}{dx} \right) \right]\]

\[ \Rightarrow x^y \times \frac{y}{x} + x^y \log x\frac{dy}{dx} + y^x \times \frac{x}{y}\frac{dy}{dx} + y^x \log y = \left( x + y \right)^\left( x + y \right) \left[ 1 \times \left( 1 + \frac{dy}{dx} \right) + \log\left( x + y \right)\left( 1 + \frac{dy}{dx} \right) \right]\]

\[ \Rightarrow x^{y - 1} \times y + x^y \log x\frac{dy}{dx} + y^{x - 1} \times x\frac{dy}{dx} + y^x \log y = \left( x + y \right)^\left( x + y \right) + \left( x + y \right)^\left( x + y \right) \frac{dy}{dx} + \left( x + y \right)^\left( x + y \right) \log\left( x + y \right) + \left( x + y \right)^\left( x + y \right) \log\left( x + y \right)\frac{dy}{dx}\]

\[ \Rightarrow \frac{dy}{dx}\left[ x^y \log x + x y^{x - 1} - \left( x + y \right)^\left( x + y \right) \left\{ 1 + \log\left( x + y \right) \right\} \right] = \left( x + y \right)^\left( x + y \right) \left\{ 1 + \log\left( x + y \right) \right\} - x^{y - 1} \times y - y^x \log y\]

\[ \Rightarrow \frac{dy}{dx} = \left[ \frac{\left( x + y \right)^\left( x + y \right) \left\{ 1 + \log\left( x + y \right) \right\} - y x^{y - 1} - y^x \log y}{x^y \log x + x y^{x - 1} - \left( x + y \right)^\left( x + y \right) \left\{ 1 + \log\left( x + y \right) \right\}} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 38 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles log cos x ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Write the derivative of sinx with respect to cos x ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function  log (sin x) ?


Find the second order derivatives of the following function x3 log ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


Find the minimum value of (ax + by), where xy = c2.


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×