Advertisements
Advertisements
प्रश्न
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
उत्तर
\[\text{ Given that }y^x + x^y + x^x = a^b \]
\[\text{ Putting u }= y^x , v = x^y \text{and }w = x^x , \text{ we get }\]
\[ u + v + w = a^b \]
\[ \therefore \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} = 0 . . . \left( i \right)\]
\[\text{ Now, u } = y^x \]
Taking log on both sides,
\[\log u = x \log y\]
\[\Rightarrow \frac{1}{u}\frac{du}{dx} = x\frac{d}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \left[ \text{ using product } rule \right]\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = x\frac{1}{y}\frac{dy}{dx} + \log y \times 1\]
\[ \Rightarrow \frac{du}{dx} = u\left( \frac{x}{y}\frac{dy}{dx} + \log y \right)\]
\[ \Rightarrow \frac{du}{dx} = y^x \left( \frac{x}{y}\frac{dy}{dx} + \log y \right) . . . \left( ii \right)\]
\[\text{ Also, v } = x^y\]
Taking log on both sides,
\[\log v = y \log x\]
\[\Rightarrow \frac{1}{v}\frac{dv}{dx} = y\frac{d}{dx}\left( \log x \right) + \log x\frac{dy}{dx}\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = y\frac{1}{x} + \log x\frac{dy}{dx}\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \frac{y}{x} + \log x\frac{dy}{dx} \right]\]
\[ \Rightarrow \frac{dv}{dx} = x^y \left[ \frac{y}{x} + \log x\frac{dy}{dx} \right] . . . \left( iii \right)\]
\[\text{ Again, w } = x^x\]
Taking log on both sides,
\[\log w = x \log x\]
\[\Rightarrow \frac{1}{w}\frac{dw}{dx} = x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x \right)\]
\[ \Rightarrow \frac{1}{w}\frac{dw}{dx} = x\frac{1}{x} + \log x\left( 1 \right)\]
\[ \Rightarrow \frac{dw}{dx} = w\left( 1 + \log x \right)\]
\[ \Rightarrow \frac{dw}{dx} = x^x \left( 1 + \log x \right) . . . \left( iv \right)\]
\[\text{ From } \left( i \right), \left( ii \right), \left( iii \right)\text{ and }\left( iv \right), \text{ we have }\]
\[ y^x \left( \frac{x}{y}\frac{dy}{dx} + \log y \right) + x^y \left( \frac{y}{x} + \log x\frac{dy}{dx} \right) + x^x \left( 1 + \log x \right) = 0\]
\[ \Rightarrow \left( x . y^{x - 1} + x^y . \log x \right)\frac{dy}{dx} = - x^x \left( 1 + \log x \right) - y . x^{y - 1} - y^x \log y\]
\[ \therefore \frac{dy}{dx} = \frac{- \left\{ y^x \log y + y . x^{y - 1} + x^x \left( 1 + \log x \right) \right\}}{x . y^{x - 1} + x^y \log x}\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate the following functions from first principles log cosec x ?
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate etan x ?
Differentiate `2^(x^3)` ?
Differentiate \[3^{e^x}\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[e^x \log \sin 2x\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?