हिंदी

If F ( X ) = ( X L X M ) L + M ( X M X N ) M + N ( X N X L ) N + 1 the F' (X) is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .

विकल्प

  • 1

  • 0

  • \[x^{l + m + n}\]

  • none of these

MCQ

उत्तर

`0`

 

We have,

\[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\]
\[\Rightarrow f\left( x \right) = x^{\left( l - m \right)\left( l + m \right)} \times x^{\left( m - n \right)\left( m + n \right) }\times x^{\left( n - l \right)\left( n + l \right) }\]
\[ \Rightarrow f\left( x \right) = x^{l^2 - m^2} \times x^{m^2 - n^2} \times x^{n^2 - l^2} \]
\[ \Rightarrow f\left( x \right) = x^\left( l^2 - m^2 + m^2 - n^2 + n^2 - l^2 \right) \]
\[ \Rightarrow f\left( x \right) = x^0 \]
\[ \Rightarrow f\left( x \right) = 1\]
\[ \Rightarrow f'\left( x \right) = 0\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.10 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.10 | Q 25 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate log7 (2x − 3) ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = a + bx2, a, b arbitrary constants, then

 


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


f(x) = 3x2 + 6x + 8, x ∈ R


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×