Advertisements
Advertisements
प्रश्न
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
उत्तर
\[\text { We have }, \]
\[x = a \sin t - b \cos t, y = a \cos t + b \sin t\]
\[\text { On differentiating with respect to t, we get }\]
\[\frac{d x}{d t} = \frac{d}{d t}\left( a \sin t - b \cos t \right) = a \cos t + b \sin t\]
\[\text { and }\]
\[\frac{d y}{d t} = \frac{d}{d t}\left( a \cos t + b \sin t \right) = - a \sin t + b \cos t\]
\[\text { Now,} \left( \frac{d y}{d x} \right) = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- a \sin t + b \cos t}{a \cos t + b \sin t}\]
\[\text { Therefore, } \]
\[\frac{d^2 y}{d x^2} = \frac{d}{d x}\left( \frac{d y}{d x} \right) = \frac{d}{d x}\left( \frac{- a \sin t + b \cos t}{a \cos t + b \sin t} \right)\]
\[ = \frac{d}{d t}\left( \frac{- a \sin t + b \cos t}{a \cos t + b \sin t} \right) \times \frac{dt}{dx}\]
\[ = \frac{\left( a \cos t + b \sin t \right)\frac{d}{dt}\left( - a \sin t + b \cos t \right) - \left( - a \sin t + b \cos t \right)\frac{d}{dt}\left( a \cos t + b \sin t \right)}{\left( a \cos t + b \sin t \right)^2} \times \frac{1}{a \cos t + b \sin t}\]
\[ = \frac{\left( a \cos t + b \sin t \right)\left( - a \cos t - b \sin t \right) - \left( - a \sin t + b \cos t \right)\left( - a \sin t + b \cos t \right)}{\left( a \cos t + b \sin t \right)^3}\]
\[ = \frac{- \left( a \cos t + b \sin t \right)^2 - \left( - a \sin t + b \cos t \right)^2}{\left( a \cos t + b \sin t \right)^3}\]
\[ = \frac{- \left( a \cos t + b \sin t \right)^2 - \left( a \sin t - b \cos t \right)^2}{\left( a \cos t + b \sin t \right)^3}\]
\[ = \frac{- y^2 - x^2}{y^3}\]
\[\text{Hence,} \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} .\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
Differential coefficient of sec(tan−1 x) is ______.
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
Find the second order derivatives of the following function tan−1 x ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If y = etan x, then (cos2 x)y2 =