Advertisements
Advertisements
प्रश्न
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
उत्तर
\[\text{ We have}, x^x + y^x = 1\]
\[ \Rightarrow e^{\log x^x} + e^{\log y^x} = 1\]
\[ \Rightarrow e^{x \log x} + e^{x \log y} = 1 \]
Differentiating with respect to x using chain rule,
\[\frac{d}{dx}\left( e^{x\log x} \right) + \frac{d}{dx}\left( e^{x \log y} \right) = \frac{d}{dx}\left( 1 \right)\]
\[ \Rightarrow e^{x \log x} \frac{d}{dx}\left( x \log x \right) + e^{x \log y} \frac{d}{dx}\left( x \log y \right) = 0\]
\[ \Rightarrow e^{x \log x} \left[ x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x \right) \right] + e^{\log y^x} \left[ x\frac{d}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \right] = 0\]
\[ \Rightarrow x^x \left[ x\left( \frac{1}{x} \right) + \log x\left( 1 \right) \right] + y^x \left[ x\left( \frac{1}{y} \right)\frac{dy}{dx} + \log y\left( 1 \right) \right] = 0\]
\[ \Rightarrow x^x \left[ 1 + \log x \right] + y^x \left( \frac{x}{y}\frac{dy}{dx} + \log y \right) = 0\]
\[ \Rightarrow y^x \times \frac{x}{y}\frac{dy}{dx} = - \left[ x^x \left( 1 + \log x \right) + y^x \log y \right]\]
\[ \Rightarrow \left( x y^{x - 1} \right)\frac{dy}{dx} = - \left[ x^x \left( 1 + \log x \right) + y^x \log y \right]\]
\[ \Rightarrow \frac{dy}{dx} = - \left[ \frac{x^x \left( 1 + \log x \right) + y^x \log y}{x y^{x - 1}} \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate tan 5x° ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function x cos x ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.