हिंदी

If Y X = E Y − X ,Prove that D Y D X = ( 1 + Log Y ) 2 Log Y ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?

उत्तर

\[\text{ We have,} y^x = e^{y - x} \]

Taking log on both sides, 

\[\log y^x = \log e^\left( y - x \right) \]

\[ \Rightarrow x\log y = \left( y - x \right)\log e\]

\[ \Rightarrow x\log y = y - x . . . \left( i \right)\]

Differentiating with respect to x,

\[\frac{d}{dx}\left( x \log y \right) = \frac{d}{dx}\left( y - x \right)\]

\[ \Rightarrow \left[ x\frac{d}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \right] = \frac{dy}{dx} - 1\]

\[ \Rightarrow x\left( \frac{1}{y} \right)\frac{dy}{dx} + \log y\left( 1 \right) = \frac{dy}{dx} - 1\]

\[ \Rightarrow \frac{dy}{dx}\left( \frac{x}{y} - 1 \right) = - 1 - \log y\]

\[ \Rightarrow \frac{dy}{dx}\left( \frac{y}{\left( 1 + \log y \right)y} - 1 \right) = - \left( 1 + \log y \right) \left[ Using \left( i \right) \right] \]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{1 - 1 - \log y}{\left( 1 + \log y \right)} \right] = - \left( 1 + \log y \right)\]

\[ \Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + \log y \right)^2}{- \log y}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 40 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Prove that `y=(4sintheta)/(2+costheta)-theta `


Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles log cosec x ?


Differentiate log7 (2x − 3) ?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( \log x \right)^x\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×