Advertisements
Advertisements
प्रश्न
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
उत्तर
\[\text{ We have,} y^x = e^{y - x} \]
Taking log on both sides,
\[\log y^x = \log e^\left( y - x \right) \]
\[ \Rightarrow x\log y = \left( y - x \right)\log e\]
\[ \Rightarrow x\log y = y - x . . . \left( i \right)\]
Differentiating with respect to x,
\[\frac{d}{dx}\left( x \log y \right) = \frac{d}{dx}\left( y - x \right)\]
\[ \Rightarrow \left[ x\frac{d}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \right] = \frac{dy}{dx} - 1\]
\[ \Rightarrow x\left( \frac{1}{y} \right)\frac{dy}{dx} + \log y\left( 1 \right) = \frac{dy}{dx} - 1\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{x}{y} - 1 \right) = - 1 - \log y\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{y}{\left( 1 + \log y \right)y} - 1 \right) = - \left( 1 + \log y \right) \left[ Using \left( i \right) \right] \]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{1 - 1 - \log y}{\left( 1 + \log y \right)} \right] = - \left( 1 + \log y \right)\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + \log y \right)^2}{- \log y}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\]
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles log cosec x ?
Differentiate log7 (2x − 3) ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.