Advertisements
Advertisements
Question
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
Solution
\[\text{ We have,} y^x = e^{y - x} \]
Taking log on both sides,
\[\log y^x = \log e^\left( y - x \right) \]
\[ \Rightarrow x\log y = \left( y - x \right)\log e\]
\[ \Rightarrow x\log y = y - x . . . \left( i \right)\]
Differentiating with respect to x,
\[\frac{d}{dx}\left( x \log y \right) = \frac{d}{dx}\left( y - x \right)\]
\[ \Rightarrow \left[ x\frac{d}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \right] = \frac{dy}{dx} - 1\]
\[ \Rightarrow x\left( \frac{1}{y} \right)\frac{dy}{dx} + \log y\left( 1 \right) = \frac{dy}{dx} - 1\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{x}{y} - 1 \right) = - 1 - \log y\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{y}{\left( 1 + \log y \right)y} - 1 \right) = - \left( 1 + \log y \right) \left[ Using \left( i \right) \right] \]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{1 - 1 - \log y}{\left( 1 + \log y \right)} \right] = - \left( 1 + \log y \right)\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + \log y \right)^2}{- \log y}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles ecos x.
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.