Advertisements
Advertisements
Question
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
Solution
\[\text { Let, u } = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
\[\text { Put x }= \tan\theta\]
\[ \Rightarrow \theta = \tan^{- 1} x\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 - \tan\theta}{1 + \tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} - \theta \right) \right] . . . \left( i \right)\]
\[\text { Here,} \]
\[ - 1 < x < 1\]
\[ \Rightarrow - 1 < \tan\theta < 1\]
\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4}\]
\[ \Rightarrow \frac{\pi}{4} > - \theta > \frac{\pi}{4}\]
\[ \Rightarrow - \frac{\pi}{4} < - \theta < \frac{\pi}{4}\]
\[ \Rightarrow 0 < \frac{\pi}{4} - \theta < \frac{\pi}{2}\]
\[\text { So, from equation } \left( i \right), \]
\[u = \frac{\pi}{4} - \theta \left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text { if } \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow u = \frac{\pi}{4} - \tan^{- 1} x\]
Differentiating it with respect to x,
\[\frac{du}{dx} = 0 - \left( \frac{1}{1 + x^2} \right)\]
\[ \Rightarrow \frac{du}{dx} = - \frac{1}{1 + x^2} . . . \left( ii \right)\]
\[\text {And let, v } = \sqrt{1 - x^2}\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 - x^2}} \times \frac{d}{dx}\left( 1 - x^2 \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 - x^2}}\left( - 2x \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{- x}{\sqrt{1 - x^2}} . . . \left( iii \right)\]
\[\text { Dividing equation }\left( ii \right) by \left( iii \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = - \frac{1}{1 + x^2} \times \frac{\sqrt{1 - x^2}}{- x}\]
\[ \therefore \frac{du}{dv} = \frac{\sqrt{1 - x^2}}{x\left( 1 + x^2 \right)}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles eax+b.
Differentiate the following functions from first principles ecos x.
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate x2 with respect to x3
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
Find the second order derivatives of the following function log (sin x) ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
Find the minimum value of (ax + by), where xy = c2.
Differentiate sin(log sin x) ?
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?