Advertisements
Advertisements
Question
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Solution
\[\text{ Let, y }= \sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\]
\[\text{put x } = a \tan\theta\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \frac{a \tan\theta}{\sqrt{a^2 \tan^2 \theta + a^2}} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left\{ \frac{a \tan\theta}{\sqrt{a^2 \left( \tan^2 \theta + 1 \right)}} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left( \frac{a \tan\theta}{a sec\theta} \right) \]
\[ \Rightarrow y = \sin^{- 1} \left( \sin\theta \right) \]
\[ \Rightarrow y = \theta\]
\[ \Rightarrow y = \tan^{- 1} \left( \frac{x}{a} \right) \left[ \text{since, }x = a \tan\theta \right] \]
\[\text{ Differentiating it with respect to x using chain rule }, \]
\[ \frac{d y}{d x} = \frac{1}{1 + \left( \frac{x}{a} \right)^2}\frac{d}{dx}\left( \frac{x}{a} \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{a^2}{a^2 + x^2} \times \left( \frac{1}{a} \right)\]
\[ \therefore \frac{d y}{d x} = \frac{a}{a^2 + x^2}\]
APPEARS IN
RELATED QUESTIONS
Differentiate sin (3x + 5) ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function tan−1 x ?
Find the second order derivatives of the following function log (log x) ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
Differentiate `log [x+2+sqrt(x^2+4x+1)]`