Advertisements
Advertisements
Question
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Solution
\[\text{We have, y } = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] Differentiating with respect to x,
\[\frac{d y}{d x} = \frac{d}{dx}\left( \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{\sqrt{1 - x^2}\frac{d}{dx}\left( x \sin^{- 1} x \right) - \left( x \sin^{- 1} x \right)\frac{d}{dx}\left( \sqrt{1 - x^2} \right)}{\left( \sqrt{1 - x^2} \right)^2} \right] \]
\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{\sqrt{1 - x^2}\left\{ x\frac{d}{dx}\left( \sin^{- 1} x \right) + \sin^{- 1} x\frac{d}{dx}\left( x \right) \right\} - \left( x \sin^{- 1} x \right)\frac{1}{2\sqrt{1 - x^2}}\frac{d}{dx}\left( 1 - x^2 \right)}{\left( 1 - x^2 \right)} \right] \]
\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{\sqrt{1 - x^2}\left\{ \frac{x}{\sqrt{1 - x^2}} + \sin^{- 1} x \right\} - \frac{x \sin^{- 1} x\left( - 2x \right)}{2\sqrt{1 - x^2}}}{\left( 1 - x^2 \right)} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{x + \sqrt{1 - x^2} \sin^{- 1} x + \frac{x^2 \sin^{- 1} x}{\sqrt{1 - x^2}}}{\left( 1 - x^2 \right)} \right]\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \frac{\sqrt{1 - x^2} \sin^{- 1} x}{1} + \frac{x^2 \sin^{- 1} x}{\sqrt{1 - x^2}}\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \left( \frac{\left( 1 - x^2 \right) \sin^{- 1} x + x^2 \sin^{- 1} x}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \left( \frac{\sin^{- 1} x - x^2 \sin^{- 1} x + x^2 \sin^{- 1} x}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \left( \frac{\sin^{- 1} x}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \frac{y}{x} \left[ \because y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} \right]\]
APPEARS IN
RELATED QUESTIONS
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles e3x.
Differentiate tan 5x° ?
Differentiate `2^(x^3)` ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?