English

Differentiate ( Sin − 1 X 4 ) 4 ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?

Solution

\[\text{Let }y = \left( \sin^{- 1} x^4 \right)^4\]

Differentiate it with respect to x we get,

\[\frac{d y}{d x} = \frac{d}{dx} \left( \sin^{- 1} x^4 \right)^4 \]

\[ = 4 \left( \sin^{- 1} x^4 \right)^3 \frac{d}{dx}\left( \sin^{- 1} x^4 \right) \left[ \text{ Using chain rule} \right]\]

\[ = 4 \left( \sin^{- 1} x^4 \right)^3 \frac{1}{\sqrt{1 - \left( x^4 \right)^2}}\frac{d}{dx}\left( x^4 \right) \left[ \text{Using chain rule} \right]\]

\[ = 4 \left( \sin^{- 1} x^4 \right)^3 \frac{4 x^3}{\sqrt{1 - x^8}}\]

\[ = \frac{16 x^3 \left( \sin^{- 1} x^4 \right)^3}{\sqrt{1 - x^8}}\]

\[So, \frac{d}{dx} \left( \sin^{- 1} x^4 \right)^4 = \frac{16 x^3 \left( \sin^{- 1} x^4 \right)^3}{\sqrt{1 - x^8}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.02 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.02 | Q 47 | Page 37

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles e−x.


Differentiate sin (3x + 5) ?


Differentiate sin (log x) ?


Differentiate (log sin x)?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


If  \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?

 


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function tan−1 x ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to


Differentiate sin(log sin x) ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×