English

If Y = Xn−1 Log X Then X2 Y2 + (3 − 2n) Xy1 is Equal to (A) −(N − 1)2 Y (B) (N − 1)2y - Mathematics

Advertisements
Advertisements

Question

If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to

Options

  • −(n − 1)2 y

  • (n − 1)2y

  • −n2y

  •  n2y

MCQ

Solution

(a) −(n − 1)2 y

Here,

\[y = x^{n - 1} \log x\]

\[ \Rightarrow y_1 = \left( n - 1 \right) x^{n - 2} \log x + \frac{x^{n - 1}}{x}\]

\[ \Rightarrow y_1 = \frac{\left( n - 1 \right) x^{n - 1} \log x + x^{n - 1}}{x}\]

\[ \Rightarrow x y_1 = \left( n - 1 \right)y + x^{n - 1} \]

\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 2} \]

\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \frac{\left( n - 1 \right) x^{n - 1}}{x}\]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 1} \]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)\left\{ x y_1 - \left( n - 1 \right)y \right\}\]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)x y_1 - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 = 2x\left( n - 1 \right) y_1 - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 - 2x\left( n - 1 \right) y_1 = - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 \left( 1 - 2n + 2 \right) = - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + \left( 3 - 2n \right)x y_1 = - \left( n - 1 \right)^2 y\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.3 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.3 | Q 24 | Page 24

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate sin (log x) ?


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate etan x ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[e^{x \log x}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×