English

Differentiate the Following Functions from First Principles Sin−1 (2x + 3) ? - Mathematics

Advertisements
Advertisements

Question

Differentiate the following functions from first principles sin−1 (2x + 3) ?

Sum

Solution

\[\text{Let} f\left( x \right) = \sin^{- 1} \left( 2x + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2\left( x + h \right) + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2x + 2h + 3 \right)\]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left( 2x + 2h + 3 \right) - \sin^{- 1} \left( 2x + 3 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left[ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right]}{h} \left[ \because \sin^{- 1} x - \sin^{- 1} y = \sin^{- 1} \left[ x\sqrt{1 - y^2} - y\sqrt{1 - x^2} \right] \right]\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} z}{z} \times \frac{z}{h}\]
\[\text{where, } z = \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \text{ and }\lim_{h \to 0} \frac{\sin^{- 1} h}{h} = 1\]
\[ = \lim_{h \to 0} \frac{z}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2}}{h}\]

\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)^2 \left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left\{ 1 - \left( 2x + 2h + 3 \right)^2 \right\}}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}} \]      ...........[Rationalizing numerator]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) \right]\left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left[ 1 - \left( 2x + 3 \right)^2 - 4 h^2 - 4h\left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) - \left( 2x + 3 \right)^4 - 4 h^2 \left( 2x + 3 \right)^2 - 4h \left( 2x + 3 \right)^3 - \left( 2x + 3 \right)^2 + \left( 2x + 3 \right)^4 + 4 h^2 \left( 2x + 3 \right)^2 + 4h \left( 2x + 3 \right)^3 \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{4h\left[ h + \left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \frac{4\left( 2x + 3 \right)}{\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{4\left( 2x + 3 \right)}{2\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ \therefore \frac{d}{dx}\left\{ \sin^{- 1} \left( 2x + 3 \right) \right\} = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.01 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.01 | Q 10 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Prove that `y=(4sintheta)/(2+costheta)-theta `


If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles e3x.


Differentiate sin (log x) ?


Differentiate (log sin x)?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?


If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×