Advertisements
Advertisements
Question
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Solution
\[\text{Let} f\left( x \right) = \sin^{- 1} \left( 2x + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2\left( x + h \right) + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2x + 2h + 3 \right)\]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left( 2x + 2h + 3 \right) - \sin^{- 1} \left( 2x + 3 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left[ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right]}{h} \left[ \because \sin^{- 1} x - \sin^{- 1} y = \sin^{- 1} \left[ x\sqrt{1 - y^2} - y\sqrt{1 - x^2} \right] \right]\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} z}{z} \times \frac{z}{h}\]
\[\text{where, } z = \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \text{ and }\lim_{h \to 0} \frac{\sin^{- 1} h}{h} = 1\]
\[ = \lim_{h \to 0} \frac{z}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)^2 \left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left\{ 1 - \left( 2x + 2h + 3 \right)^2 \right\}}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}} \] ...........[Rationalizing numerator]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) \right]\left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left[ 1 - \left( 2x + 3 \right)^2 - 4 h^2 - 4h\left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) - \left( 2x + 3 \right)^4 - 4 h^2 \left( 2x + 3 \right)^2 - 4h \left( 2x + 3 \right)^3 - \left( 2x + 3 \right)^2 + \left( 2x + 3 \right)^4 + 4 h^2 \left( 2x + 3 \right)^2 + 4h \left( 2x + 3 \right)^3 \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{4h\left[ h + \left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \frac{4\left( 2x + 3 \right)}{\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{4\left( 2x + 3 \right)}{2\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ \therefore \frac{d}{dx}\left\{ \sin^{- 1} \left( 2x + 3 \right) \right\} = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]
APPEARS IN
RELATED QUESTIONS
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Prove that `y=(4sintheta)/(2+costheta)-theta `
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles e3x.
Differentiate sin (log x) ?
Differentiate (log sin x)2 ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function e6x cos 3x ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]