हिंदी

Differentiate the Following Functions from First Principles Sin−1 (2x + 3) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the following functions from first principles sin−1 (2x + 3) ?

योग

उत्तर

\[\text{Let} f\left( x \right) = \sin^{- 1} \left( 2x + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2\left( x + h \right) + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2x + 2h + 3 \right)\]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left( 2x + 2h + 3 \right) - \sin^{- 1} \left( 2x + 3 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left[ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right]}{h} \left[ \because \sin^{- 1} x - \sin^{- 1} y = \sin^{- 1} \left[ x\sqrt{1 - y^2} - y\sqrt{1 - x^2} \right] \right]\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} z}{z} \times \frac{z}{h}\]
\[\text{where, } z = \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \text{ and }\lim_{h \to 0} \frac{\sin^{- 1} h}{h} = 1\]
\[ = \lim_{h \to 0} \frac{z}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2}}{h}\]

\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)^2 \left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left\{ 1 - \left( 2x + 2h + 3 \right)^2 \right\}}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}} \]      ...........[Rationalizing numerator]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) \right]\left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left[ 1 - \left( 2x + 3 \right)^2 - 4 h^2 - 4h\left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) - \left( 2x + 3 \right)^4 - 4 h^2 \left( 2x + 3 \right)^2 - 4h \left( 2x + 3 \right)^3 - \left( 2x + 3 \right)^2 + \left( 2x + 3 \right)^4 + 4 h^2 \left( 2x + 3 \right)^2 + 4h \left( 2x + 3 \right)^3 \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{4h\left[ h + \left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \frac{4\left( 2x + 3 \right)}{\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{4\left( 2x + 3 \right)}{2\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ \therefore \frac{d}{dx}\left\{ \sin^{- 1} \left( 2x + 3 \right) \right\} = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.01 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.01 | Q 10 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate \[\tan \left( e^{\sin x }\right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


Find the second order derivatives of the following function  x3 + tan x ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Differentiate sin(log sin x) ?


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×