Advertisements
Advertisements
प्रश्न
Differentiate the following functions from first principles sin−1 (2x + 3) ?
उत्तर
\[\text{Let} f\left( x \right) = \sin^{- 1} \left( 2x + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2\left( x + h \right) + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2x + 2h + 3 \right)\]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left( 2x + 2h + 3 \right) - \sin^{- 1} \left( 2x + 3 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left[ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right]}{h} \left[ \because \sin^{- 1} x - \sin^{- 1} y = \sin^{- 1} \left[ x\sqrt{1 - y^2} - y\sqrt{1 - x^2} \right] \right]\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} z}{z} \times \frac{z}{h}\]
\[\text{where, } z = \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \text{ and }\lim_{h \to 0} \frac{\sin^{- 1} h}{h} = 1\]
\[ = \lim_{h \to 0} \frac{z}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)^2 \left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left\{ 1 - \left( 2x + 2h + 3 \right)^2 \right\}}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}} \] ...........[Rationalizing numerator]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) \right]\left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left[ 1 - \left( 2x + 3 \right)^2 - 4 h^2 - 4h\left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) - \left( 2x + 3 \right)^4 - 4 h^2 \left( 2x + 3 \right)^2 - 4h \left( 2x + 3 \right)^3 - \left( 2x + 3 \right)^2 + \left( 2x + 3 \right)^4 + 4 h^2 \left( 2x + 3 \right)^2 + 4h \left( 2x + 3 \right)^3 \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{4h\left[ h + \left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \frac{4\left( 2x + 3 \right)}{\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{4\left( 2x + 3 \right)}{2\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ \therefore \frac{d}{dx}\left\{ \sin^{- 1} \left( 2x + 3 \right) \right\} = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function x3 + tan x ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
Differentiate sin(log sin x) ?
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?