हिंदी

If Y = X X + 2 , Prove Tha X D Y D X = ( 1 − Y ) Y ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 

उत्तर

\[\text{We have, y } = \frac{x}{x + 2}\]

Differentiating with respect to x,

\[\frac{d y}{d x} = \frac{d}{dx}\left( \frac{x}{x + 2} \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{\left( x + 2 \right)\frac{d}{dx}\left( x \right) - x\frac{d}{dx}\left( x + 2 \right)}{\left( x + 2 \right)^2} \]

\[ \Rightarrow \frac{d y}{d x} = \frac{x + 2 - x}{\left( x + 2 \right)^2}\]

\[ \Rightarrow \frac{d y}{d x} = \frac{x + 2}{\left( x + 2 \right)^2} - \frac{x}{\left( x + 2 \right)^2}\]

\[ \Rightarrow \frac{d y}{d x} = \frac{1}{x + 2} - \frac{x y^2}{x^2} \left[ \because x + 2 = \frac{x}{y} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \frac{y}{x} - \frac{y^2}{x}\]

\[ \Rightarrow \frac{d y}{d x} = \frac{1}{x}y\left( 1 - y \right)\]

\[ \Rightarrow x\frac{d y}{d x} = \left( 1 - y \right)y\]

\[ \text{Hence proved}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.02 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.02 | Q 60 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[\left( \tan x \right)^{1/x}\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×