हिंदी

If Y Log (1 + Cos X), Prove that D 3 Y D X 3 + D 2 Y D X 2 ⋅ D Y D X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?

उत्तर

Here,

\[y = \log\left( 1 + \cos x \right)\]

\[\text { Differentiating w . r . t . x, we get }\]

\[\frac{d y}{d x} = \frac{- \sin x}{1 + \cos x}\]

\[\text { Differentiating again w . r . t . x, we get }\]

\[\frac{d^2 y}{d x^2} = \frac{- \cos x - \cos^2 x - \sin^2 x}{\left( 1 + \cos x \right)^2} = \frac{- \left( \cos x + 1 \right)}{\left( 1 + \cos x \right)} = \frac{- 1}{1 + \cos x}\]

\[\text { Differentiating again w . r . t . x, we get }\]

\[\frac{d^3 y}{d x^3} = \frac{- \sin x}{\left( 1 + \cos x \right)^2}\]

\[ \Rightarrow \frac{d^3 y}{d x^3} + \frac{\sin x}{\left( 1 + \cos x \right)^2} = 0\]

\[ \Rightarrow \frac{d^3 y}{d x^3} + \left( \frac{- 1}{1 + \cos x} \right)\left( \frac{- \sin x}{1 + \cos x} \right) = 0\]

\[ \Rightarrow \frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \times \frac{d y}{d x} = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.1 | Q 38 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles eax+b.


Differentiate etan x ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate (log sin x)?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×