Advertisements
Advertisements
प्रश्न
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
उत्तर
\[\text { We have,} \]
\[y = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} . . . (1)\]
\[\text { Differentiating y with respect to x, we get }\]
\[\frac{d y}{d x} = n x^{n - 1} \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^n \left\{ - a \sin\left( \log x \right) \times \frac{1}{x} + b \cos\left( \log x \right) \times \frac{1}{x} \right\}\]
\[ = \frac{n}{x} x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\}\]
\[ = \frac{n}{x}y + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} \left[\text { From }(1) \right]\]
\[ \Rightarrow x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} = \frac{d y}{d x} - \frac{n}{x}y . . . (2)\]
\[\text { Differentiating } \frac{d y}{d x} \text { with respect to x, we get }\]
\[\frac{d^2 y}{d x^2} = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right) x^{n - 2} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \cos\left( \log x \right) \times \frac{1}{x} - b \sin\left( \log x \right) \times \frac{1}{x} \right\}\]
\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right)\frac{x^{n - 1}}{x}\left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} - \frac{x^n}{x^2}\left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}\]
\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\left( \frac{d y}{d x} - \frac{n}{x}y \right) - \frac{y}{x^2} \left[ \text { From }(1) \text { and } \left( 2 \right) \right]\]
\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\frac{d y}{d x} - \frac{n\left( n - 1 \right)y}{x^2} - \frac{y}{x^2}\]
\[ = \frac{d y}{d x}\left( \frac{n + n - 1}{x} \right) - \frac{\left( n + n^2 - n + 1 \right)y}{x^2}\]
\[ = \left( \frac{2n - 1}{x} \right)\frac{d y}{d x} - \frac{\left( n^2 + 1 \right)y}{x^2}\]
\[ \Rightarrow x^2 \frac{d^2 y}{d x^2} - x\left( 2n - 1 \right)\frac{d y}{d x} + \left( n^2 + 1 \right)y = 0\]
\[\text { Hence }, x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 .\]
APPEARS IN
संबंधित प्रश्न
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
Find the second order derivatives of the following function x cos x ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is