Advertisements
Advertisements
प्रश्न
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
उत्तर
\[y = a x^{n + 1} + b x^{- n} \]
\[\text { and }x^2 \frac{d^2 y}{d x^2} = \lambda y\]
\[\text { Now }, \]
\[\frac{d y}{d x} = a\left( n + 1 \right) x^n - bn x^{- n - 1} \]
\[\text{ and } \frac{d^2 y}{d x^2} = an\left( n + 1 \right) x^{n - 1} - bn\left( - n - 1 \right) x^{- n - 2} \]
\[\text { Now,} x^2 \frac{d^2 y}{d x^2} = \lambda y \left[ \text { Given } \right]\]
\[ \Rightarrow x^2 \left[ an\left( n + 1 \right) x^{n - 1} + bn\left( n + 1 \right) x^{- n - 2} \right] = \lambda\left( a x^{n + 1} + b x^{- n} \right)\]
\[ \Rightarrow an\left( n + 1 \right) x^{n + 1} + bn\left( n + 1 \right) x^{- n} = \lambda\left( a x^{n + 1} + b x^{- n} \right)\]
\[ \Rightarrow n\left( n + 1 \right)\left( a x^{n + 1} + b x^{- n} \right) = \lambda\left( a x^{n + 1} + b x^{- n} \right)\]
\[ \Rightarrow \lambda = n\left( n + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate sin (log x) ?
Differentiate logx 3 ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
Find the second order derivatives of the following function e6x cos 3x ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.