Advertisements
Advertisements
प्रश्न
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
उत्तर
\[\text { We have,} \]
\[y = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} . . . (1)\]
\[\text { Differentiating y with respect to x, we get }\]
\[\frac{d y}{d x} =\text { an} \left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( 1 + \frac{1}{2\sqrt{x^2 + 1}} \times 2x \right) - bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( 1 - \frac{1}{2\sqrt{x^2 + 1}} \times 2x \right)\]
\[ = \text { an }\left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( 1 + \frac{x}{\sqrt{x^2 + 1}} \right) - bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( 1 - \frac{x}{\sqrt{x^2 + 1}} \right)\]
\[ = \text { an }\left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} \right) - bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( \frac{\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1}} \right)\]
\[ = \text { an } \left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right) + bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( \frac{x - \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right)\]
\[ = \left\{ a \left\{ x + \sqrt{x^2 + 1} \right\}^n \left( \frac{n}{\sqrt{x^2 + 1}} \right) + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} \right\}\left( \frac{n}{\sqrt{x^2 + 1}} \right)\]
\[ = \left( \frac{n}{\sqrt{x^2 + 1}} \right)y \left[ \text { From }(1) \right]\]
\[ \Rightarrow \sqrt{x^2 + 1}\frac{d y}{d x} = ny\]
\[\text { Squaring both sides, we get }\]
\[\left( x^2 + 1 \right) \left( \frac{d y}{d x} \right)^2 = n^2 y^2 . . . (2)\]
\[\text{ Differentiating (2) with respect to x, we get }\]
\[\left( x^2 + 1 \right)2\frac{d y}{d x} \times \frac{d^2 y}{d x^2} + 2x \left( \frac{d y}{d x} \right)^2 = n^2 \left( 2y\frac{d y}{d x} \right)\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\left( \frac{d y}{d x} \right) = n^2 \left( y \right)\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\left( \frac{d y}{d x} \right) - n^2 y = 0\]
\[\text { Hence, }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 .\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles ecos x.
Differentiate tan2 x ?
Differentiate tan (x° + 45°) ?
Differentiate etan x ?
Differentiate (log sin x)2 ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]