हिंदी

If ( Cos X ) Y = ( Cos Y ) X , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 

योग

उत्तर

\[\left( \cos x \right)^y = \left( \cos y \right)^x \]
\[\text{ Taking log on both sides we get }\]
\[y\log\cos x = x\log\cos y \]
\[ \Rightarrow \frac{dy}{dx}\log\cos x - y\tan x = \log\cos y -  x \tan y\]
\[ \Rightarrow \frac{dy}{dx}\log\ cos x + x\tan y\frac{dy}{dx} = \log\cos y + y\tan x \]
\[ \Rightarrow \frac{dy}{dx}\left( \log\cos x + x\tan y \right) = log\cos y + y\tan x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\log\cos y + y\tan x}{\log \cos x + x\tan y}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 56 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate tan 5x° ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


If  \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?

 


Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


Find the second order derivatives of the following function  log (sin x) ?


Find the second order derivatives of the following function ex sin 5x  ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×