हिंदी

If X = 4z2 + 5, Y = 6z2 + 7z + 3, Find D 2 Y D X 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?

उत्तर

Here,

\[x = 4 z^2 + 5 \text { and y } = 6 z^2 + 7z + 3\]

\[\text { Differentiating w . r . t . z, we get }\]

\[\frac{d x}{d z} = 8z and \frac{d y}{d z} = 12z + 7\]

\[ \therefore \frac{d y}{d x} = \frac{12z + 7}{8z}\]

\[\text { Differentiating w . r . t . x, we get }\]

\[\frac{d^2 y}{d x^2} = \frac{12 \times 8z - 8\left( 12z + 7 \right)}{64 z^2} \times \frac{dz}{dx}\]

\[ = \frac{96z - 96z - 56}{512 z^3} = \frac{- 7}{64 z^3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.1 | Q 37 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles eax+b.


Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate `2^(x^3)` ?


Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate  \[e^x \log \sin 2x\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


Differentiate x2 with respect to x3


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\]  then find the value of λ ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If y = etan x, then (cos2 x)y2 =


Find the minimum value of (ax + by), where xy = c2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×