Advertisements
Advertisements
प्रश्न
उत्तर
\[\left( x - y \right) e^\frac{x}{x - y} = a\]
\[\text{ Taking \log on both sides, we get }\]
\[\log\left( x - y \right) + \frac{x}{x - y} = \log a\]
\[ \Rightarrow \frac{1 - \frac{dy}{dx}}{x - y} + \frac{x - y - x\left( 1 - \frac{dy}{dx} \right)}{\left( x - y \right)^2} = 0\]
\[ \Rightarrow \frac{1 - \frac{dy}{dx}}{x - y} + \frac{x\frac{dy}{dx} - y}{\left( x - y \right)^2} = 0\]
\[ \Rightarrow \frac{\left( x - y \right)\left( 1 - \frac{dy}{dx} \right) + x\frac{dy}{dx} - y}{\left( x - y \right)^2} = 0\]
\[ \Rightarrow \frac{x - x\frac{dy}{dx} - y + y\frac{dy}{dx} + x\frac{dy}{dx} - y}{\left( x - y \right)^2} = 0\]
\[ \Rightarrow x - x\frac{dy}{dx} - y + y\frac{dy}{dx} + x\frac{dy}{dx} - y = 0\]
\[ \Rightarrow y\frac{dy}{dx} + x = 2y\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles eax+b.
Differentiate tan2 x ?
Differentiate tan (x° + 45°) ?
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate tan 5x° ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function x3 log x ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If y = etan x, then (cos2 x)y2 =
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.