Advertisements
Advertisements
प्रश्न
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
उत्तर
\[\text { We have }, x\sqrt{1 + y} + y\sqrt{1 + x} = 0\]
\[ \Rightarrow x\sqrt{1 + y} = - y\sqrt{1 + x}\]
\[\text{ Squaring both sides, we get } , \]
\[ \Rightarrow \left( x\sqrt{1 + y} \right)^2 = \left( - y\sqrt{1 + x} \right)^2 \]
\[ \Rightarrow x^2 \left( 1 + y \right) = y^2 \left( 1 + x \right)\]
\[ \Rightarrow x^2 + x^2 y = y^2 + y^2 x\]
\[ \Rightarrow x^2 - y^2 = y^2 x - x^2 y\]
\[ \Rightarrow \left( x - y \right)\left( x + y \right) = xy\left( y - x \right)\]
\[ \Rightarrow \left( x + y \right) = - xy\]
\[ \Rightarrow y + xy = - x\]
\[ \Rightarrow y\left( 1 + x \right) = - x\]
\[ \Rightarrow y = \frac{- x}{\left( 1 + x \right)}\]
Differentiating with respect to x, we get,
\[\Rightarrow \frac{d y}{d x} = \left[ \frac{- \left( 1 + x \right)\frac{d}{dx}\left( x \right) - \left( - x \right)\frac{d}{dx}\left( x + 1 \right)}{\left( 1 + x \right)^2} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{- \left( 1 + x \right)\left( 1 \right) + x\left( 1 \right)}{\left( 1 + x \right)^2} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{- 1 - x + x}{\left( 1 + x \right)^2} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- 1}{\left( 1 + x \right)^2}\]
\[ \Rightarrow \left( 1 + x \right)^2 \frac{d y}{d x} = - 1\]
\[ \Rightarrow \left( 1 + x \right)^2 \frac{d y}{d x} + 1 = 0\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Prove that `y=(4sintheta)/(2+costheta)-theta `
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles log cos x ?
Differentiate etan x ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function tan−1 x ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?