हिंदी

If X √ 1 + Y + Y √ 1 + X = 0 , Prove that ( 1 + X ) 2 D Y D X + 1 = 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?

उत्तर

\[\text { We have }, x\sqrt{1 + y} + y\sqrt{1 + x} = 0\]

\[ \Rightarrow x\sqrt{1 + y} = - y\sqrt{1 + x}\]

\[\text{ Squaring both sides, we get } , \]

\[ \Rightarrow \left( x\sqrt{1 + y} \right)^2 = \left( - y\sqrt{1 + x} \right)^2 \]

\[ \Rightarrow x^2 \left( 1 + y \right) = y^2 \left( 1 + x \right)\]

\[ \Rightarrow x^2 + x^2 y = y^2 + y^2 x\]

\[ \Rightarrow x^2 - y^2 = y^2 x - x^2 y\]

\[ \Rightarrow \left( x - y \right)\left( x + y \right) = xy\left( y - x \right)\]

\[ \Rightarrow \left( x + y \right) = - xy\]

\[ \Rightarrow y + xy = - x\]

\[ \Rightarrow y\left( 1 + x \right) = - x\]

\[ \Rightarrow y = \frac{- x}{\left( 1 + x \right)}\]

Differentiating with respect to x, we get,

\[\Rightarrow \frac{d y}{d x} = \left[ \frac{- \left( 1 + x \right)\frac{d}{dx}\left( x \right) - \left( - x \right)\frac{d}{dx}\left( x + 1 \right)}{\left( 1 + x \right)^2} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{- \left( 1 + x \right)\left( 1 \right) + x\left( 1 \right)}{\left( 1 + x \right)^2} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{- 1 - x + x}{\left( 1 + x \right)^2} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \frac{- 1}{\left( 1 + x \right)^2}\]

\[ \Rightarrow \left( 1 + x \right)^2 \frac{d y}{d x} = - 1\]

\[ \Rightarrow \left( 1 + x \right)^2 \frac{d y}{d x} + 1 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.04 | Q 16 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Prove that `y=(4sintheta)/(2+costheta)-theta `


If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles log cos x ?


Differentiate etan x ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate (log x)x with respect to log x ?


Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function tan−1 x ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×