हिंदी

Differentiate Log √ X − 1 X + 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?

उत्तर

\[\text{Let } y = \log \sqrt{\frac{x - 1}{x + 1}}\]

\[ \Rightarrow y = \log \left( \frac{x - 1}{x + 1} \right)^\frac{1}{2} \]

\[ \Rightarrow y = \frac{1}{2}\log \left( \frac{x - 1}{x + 1} \right)\]

\[ \Rightarrow y = \frac{1}{2}\left[ \log\left( x - 1 \right) - \log\left( x + 1 \right) \right]\]

Differentiate it with respect to x

\[\frac{d y}{d x} = \frac{1}{2}\left[ \frac{d}{dx}\left\{ \log\left( x - 1 \right) \right\} - \frac{d}{dx}\left\{ \log\left( x + 1 \right) \right\} \right]\]

\[ = \frac{1}{2}\left( \frac{1}{x - 1} - \frac{1}{x + 1} \right)\]

\[ = \frac{1}{2}\left( \frac{2}{x^2 - 1} \right)\]

\[ = \frac{1}{x^2 - 1}\]

\[So, \frac{d y}{d x} = \frac{1}{x^2 - 1}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.02 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.02 | Q 57 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate tan2 x ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×