हिंदी

F (x) = xx has a stationary point at ______. - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = xx has a stationary point at ______.

विकल्प

  • x = e

  • x = `1/"e"`

  • x = 1

  • x = `sqrt("e")`

MCQ
रिक्त स्थान भरें

उत्तर

f(x) = xx has a stationary point at x = `1/"e"`.

Explanation:

We have f(x) = x

Taking log of both sides, we have

log f(x) = x log x

Differentiating both sides w.r.t. x, we get

`1/("f"(x)) * "f'"(x) = x * 1/x + log x * 1`

⇒ f'(x) = f(x)[1 + log x] = xx[1 + log x]

To find stationary point, f'(x) = 0

∴ xx[1 + log x] = 0

xx ≠ 0 ∴ 1 + log x = 0

⇒ log x = – 1

⇒ x = e–1

⇒ x = `1/"e"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 58 | पृष्ठ १४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Differentiate the following functions from first principles ecos x.


Differentiate the following functions from first principles log cos x ?


Differentiate tan 5x° ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Find the minimum value of (ax + by), where xy = c2.


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×